Schwab Lorenz, Gallati Niklas, Reiter Sofie M, Kimber Richard L, Kumar Naresh, McLagan David S, Biester Harald, Kraemer Stephan M, Wiederhold Jan G
Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria.
Environ Sci Technol. 2023 Oct 10;57(40):15243-15254. doi: 10.1021/acs.est.3c03703. Epub 2023 Sep 25.
Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.20 ± 0.16‰ (εHg) and 0.21 ± 0.02‰ (EHg). In closed system experiments, allowing reequilibration, the initial kinetic fractionation was overprinted by isotope exchange and followed a linear equilibrium model with -2.44 ± 0.17‰ (εHg) and 0.34 ± 0.02‰ (EHg). Heterogeneous Hg(II) reduction by magnetite caused a smaller isotopic fractionation (-1.38 ± 0.07 and 0.13 ± 0.01‰), whereas the extent of isotopic fractionation of the sorbed Fe(II) experiments was similar to the kinetic homogeneous case. Small mass-independent fractionation of even-mass Hg isotopes with 0.02 ± 0.003‰ (EHg) and ≈ -0.02 ± 0.01‰ (EHg) was consistent with theoretical predictions for the nuclear volume effect. This study contributes significantly to the database of Hg isotope enrichment factors for specific processes. Our findings show that Hg(II) reduction by dissolved Fe(II) in open systems results in a kinetic MDF with a larger ε compared to other abiotic reduction pathways, and combining MDF with the observed MIF allows the distinction from photochemical or microbial Hg(II) reduction pathways.
稳定汞(Hg)同位素比率是环境系统中生物地球化学转化的一种新兴示踪剂,但其应用需要了解各个过程的同位素富集因子。我们通过分析实验室实验的反应物和产物,研究了溶解态铁(Fe)(II)、磁铁矿以及吸附在勃姆石或针铁矿上的Fe(II)在黑暗、非生物条件下还原Hg(II)过程中的汞同位素分馏情况。对于在连续吹扫反应器中溶解态Fe(II)对Hg(II)的均相还原,结果符合瑞利蒸馏模型,富集因子为-2.20±0.16‰(εHg)和0.21±0.02‰(EHg)。在允许再平衡的封闭系统实验中,初始动力学分馏被同位素交换覆盖,并遵循线性平衡模型,εHg为-2.44±0.17‰,EHg为0.34±0.02‰。磁铁矿对Hg(II)的非均相还原导致较小的同位素分馏(-1.38±0.07和0.13±0.01‰),而吸附态Fe(II)实验的同位素分馏程度与动力学均相情况相似。质量数为偶数的汞同位素存在0.02±0.003‰(EHg)和约-0.02±0.01‰(EHg)的小质量无关分馏,这与核体积效应的理论预测一致。本研究为特定过程的汞同位素富集因子数据库做出了重要贡献。我们的研究结果表明,与其他非生物还原途径相比,开放系统中溶解态Fe(II)还原Hg(II)会导致具有更大ε的动力学质量无关分馏,将质量无关分馏与观测到的质量无关同位素分馏相结合,可以区分光化学或微生物还原Hg(II)的途径。