Suppr超能文献

抗药物抗体滴度估计的系统检查:应用建议。

A systematic examination of anti-drug antibody titer estimation: Applied recommendations.

机构信息

Global Statistical Science, Eli Lilly and Company, 893 Delaware St, Indianapolis, IN 46225, United States of America.

Clinical Diagnostics Laboratory, Eli Lilly and Company, 893 Delaware St, Indianapolis, IN 46225, United States of America.

出版信息

J Immunol Methods. 2023 Nov;522:113569. doi: 10.1016/j.jim.2023.113569. Epub 2023 Sep 23.

Abstract

Biologic drugs (therapeutic proteins or peptides) have become one of the most important therapeutic modalities over the past few decades. Drug-induced immunogenicity is a significant concern as it may affect safety, tolerability, and efficacy. With more sensitive and drug-tolerant screening assays in use today, reliable estimation of anti-drug-antibody (ADA) titer has become more important for understanding clinically relevant ADA levels. Titer is commonly defined as the dilution factor resulting in an assay signal equal to a pre-specified cut point factor. Given its influence on the resulting titer precision, the choice of a titer cut point factor warrants careful consideration. In this paper, we discuss the theoretical dilution model, investigate how titer variability depends on the cut point factor and propose a standardized cut point factor to increase precision of titer estimates. Additionally, we demonstrate that non-linear regression-based titer estimation provides both improved precision and implementation efficiency relative to commonly used estimation approaches.

摘要

生物药物(治疗性蛋白或肽)在过去几十年中已成为最重要的治疗方式之一。药物诱导的免疫原性是一个重大问题,因为它可能会影响安全性、耐受性和疗效。随着当今更敏感和更耐受药物的筛选检测方法的使用,可靠地估计抗药物抗体(ADA)滴度对于了解临床相关 ADA 水平变得更为重要。滴度通常定义为导致检测信号等于预定截止点因子的稀释倍数。鉴于其对最终滴度精度的影响,选择滴度截止点因子需要仔细考虑。在本文中,我们讨论了理论稀释模型,研究了滴度变化如何取决于截止点因子,并提出了标准化的截止点因子以提高滴度估计的精度。此外,我们还证明了基于非线性回归的滴度估计相对于常用的估计方法提供了更高的精度和实施效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验