Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, United States.
Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States.
Br J Radiol. 2023 Nov;96(1151):20220835. doi: 10.1259/bjr.20220835. Epub 2023 Sep 26.
Fat-infiltrated axillary lymph nodes (LNs) are unique sites for ectopic fat deposition. Early studies showed a strong correlation between fatty LNs and obesity-related diseases. Confirming this correlation requires large-scale studies, hindered by scarce labeled data. With the long-term goal of developing a rapid and generalizable tool to aid data labeling, we developed an automated deep learning (DL)-based pipeline to classify the status of fatty LNs on screening mammograms.
Our internal data set included 886 mammograms from a tertiary academic medical institution, with a binary status of the fat-infiltrated LNs based on the size and morphology of the largest visible axillary LN. A two-stage DL model training and fine-tuning pipeline was developed to classify the fat-infiltrated LN status using the internal training and development data set. The model was evaluated on a held-out internal test set and a subset of the Digital Database for Screening Mammography.
Our model achieved 0.97 (95% CI: 0.94-0.99) accuracy and 1.00 (95% CI: 1.00-1.00) area under the receiver operator characteristic curve on 264 internal testing mammograms, and 0.82 (95% CI: 0.77-0.86) accuracy and 0.87 (95% CI: 0.82-0.91) area under the receiver operator characteristic curve on 70 external testing mammograms.
This study confirmed the feasibility of using a DL model for fat-infiltrated LN classification. The model provides a practical tool to identify fatty LNs on mammograms and to allow for future large-scale studies to evaluate the role of fatty LNs as an imaging biomarker of obesity-associated pathologies.
Our study is the first to classify fatty LNs using an automated DL approach.
富含脂肪的腋窝淋巴结(LNs)是异位脂肪沉积的独特部位。早期研究表明,脂肪性 LNs 与肥胖相关疾病之间存在很强的相关性。证实这种相关性需要进行大规模的研究,但受到标记数据稀缺的阻碍。为了开发一种快速且可推广的工具来辅助数据标记,我们开发了一种基于自动化深度学习(DL)的流水线,以对乳房 X 光筛查片中富含脂肪的 LNs 的状态进行分类。
我们的内部数据集包括来自一家三级学术医疗机构的 886 张乳房 X 光片,基于最大可见腋窝 LN 的大小和形态,将富含脂肪的 LNs 的状态分为二分类。采用内部训练和开发数据集,开发了一个两阶段 DL 模型训练和微调流水线,以分类富含脂肪的 LN 状态。该模型在内部测试集和数字筛查乳房 X 光数据库的子集上进行了评估。
我们的模型在 264 张内部测试乳房 X 光片中实现了 0.97(95%置信区间:0.94-0.99)的准确率和 1.00(95%置信区间:1.00-1.00)的接收者操作特征曲线下面积,在 70 张外部测试乳房 X 光片中实现了 0.82(95%置信区间:0.77-0.86)的准确率和 0.87(95%置信区间:0.82-0.91)的接收者操作特征曲线下面积。
本研究证实了使用 DL 模型进行富含脂肪的 LN 分类的可行性。该模型提供了一种实用的工具,可在乳房 X 光片中识别富含脂肪的 LNs,并允许未来进行大规模研究,以评估富含脂肪的 LNs 作为肥胖相关病理的成像生物标志物的作用。
本研究首次采用自动化 DL 方法对富含脂肪的 LNs 进行分类。