Suppr超能文献

人脸的性别和身份的变化对人类和计算模型的面部分类有不同的影响。

Varying sex and identity of faces affects face categorization differently in humans and computational models.

机构信息

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

University of East Anglia, Norwich, UK.

出版信息

Sci Rep. 2023 Sep 26;13(1):16120. doi: 10.1038/s41598-023-43169-9.

Abstract

Our faces display socially important sex and identity information. How perceptually independent are these facial characteristics? Here, we used a sex categorization task to investigate how changing faces in terms of either their sex or identity affects sex categorization of those faces, whether these manipulations affect sex categorization similarly when the original faces were personally familiar or unknown, and, whether computational models trained for sex classification respond similarly to human observers. Our results show that varying faces along either sex or identity dimension affects their sex categorization. When the sex was swapped (e.g., female faces became male looking, Experiment 1), sex categorization performance was different from that with the original unchanged faces, and significantly more so for people who were familiar with the original faces than those who were not. When the identity of the faces was manipulated by caricaturing or anti-caricaturing them (these manipulations either augment or diminish idiosyncratic facial information, Experiment 2), sex categorization performance to caricatured, original, and anti-caricatured faces increased in that order, independently of face familiarity. Moreover, our face manipulations showed different effects upon computational models trained for sex classification and elicited different patterns of responses in humans and computational models. These results not only support the notion that the sex and identity of faces are processed integratively by human observers but also demonstrate that computational models of face categorization may not capture key characteristics of human face categorization.

摘要

我们的面部显示出社会重要的性别和身份信息。这些面部特征在感知上是独立的吗?在这里,我们使用性别分类任务来研究改变面部的性别或身份特征如何影响对这些面部的性别分类,无论这些操作在原始面部为个人熟悉或不熟悉时是否以相似的方式影响性别分类,以及是否受过性别分类训练的计算模型对人类观察者的反应是否相似。我们的结果表明,沿着性别或身份维度改变面部会影响其性别分类。当性别被改变时(例如,女性面孔变得男性化,实验 1),性别分类的表现与原始不变的面孔不同,对于熟悉原始面孔的人来说,这种差异更为明显,而对于不熟悉的人来说则不那么明显。当面孔的身份通过漫画或反漫画的方式被操纵时(这些操纵要么增加,要么减少特有的面部信息,实验 2),对漫画、原始和反漫画面孔的性别分类表现依次增加,与面孔的熟悉程度无关。此外,我们对面部的操纵对受过性别分类训练的计算模型产生了不同的影响,并在人类和计算模型中引起了不同的反应模式。这些结果不仅支持了人类观察者对面部的性别和身份进行综合处理的观点,而且还表明,面部分类的计算模型可能无法捕捉到人类面部分类的关键特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/359e/10522766/8fabb07d2add/41598_2023_43169_Fig1_HTML.jpg

相似文献

2
Personally familiar faces: Higher precision of memory for idiosyncratic than for categorical information.
J Exp Psychol Learn Mem Cogn. 2020 Jul;46(7):1309-1327. doi: 10.1037/xlm0000784. Epub 2019 Nov 14.
3
Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces.
Brain Res. 2008 Sep 4;1228:177-88. doi: 10.1016/j.brainres.2008.06.092. Epub 2008 Jul 2.
4
Effects of Caricaturing in Shape or Color on Familiarity Decisions for Familiar and Unfamiliar Faces.
PLoS One. 2016 Feb 22;11(2):e0149796. doi: 10.1371/journal.pone.0149796. eCollection 2016.
5
Discrimination and recognition of faces with changed configuration.
Mem Cognit. 2020 Feb;48(2):287-298. doi: 10.3758/s13421-019-01010-7.
6
How familiarity warps representation in the face space.
J Vis. 2020 Jul 1;20(7):18. doi: 10.1167/jov.20.7.18.
7
8
Decoding task-based attentional modulation during face categorization.
J Cogn Neurosci. 2011 May;23(5):1198-204. doi: 10.1162/jocn.2010.21503. Epub 2010 Apr 30.
9
Familiarity facilitates feature-based face processing.
PLoS One. 2017 Jun 5;12(6):e0178895. doi: 10.1371/journal.pone.0178895. eCollection 2017.
10
High and low performers differ in the use of shape information for face recognition.
Neuropsychologia. 2013 Jun;51(7):1310-9. doi: 10.1016/j.neuropsychologia.2013.03.015. Epub 2013 Apr 3.

本文引用的文献

1
Average faces: How does the averaging process change faces physically and perceptually?
Cognition. 2021 Nov;216:104867. doi: 10.1016/j.cognition.2021.104867. Epub 2021 Aug 4.
2
Convolutional neural net face recognition works in non-human-like ways.
R Soc Open Sci. 2020 Oct 7;7(10):200595. doi: 10.1098/rsos.200595. eCollection 2020 Oct.
3
Personally familiar faces: Higher precision of memory for idiosyncratic than for categorical information.
J Exp Psychol Learn Mem Cogn. 2020 Jul;46(7):1309-1327. doi: 10.1037/xlm0000784. Epub 2019 Nov 14.
4
Face Recognition.
Curr Neurol Neurosci Rep. 2019 May 30;19(7):41. doi: 10.1007/s11910-019-0960-9.
6
Same-gender distractors are not so easy to reject: ERP evidence of gender categorization.
Cogn Affect Behav Neurosci. 2018 Oct;18(5):825-836. doi: 10.3758/s13415-018-0607-3.
7
The neural representation of the gender of faces in the primate visual system: A computer modeling study.
Psychol Rev. 2017 Mar;124(2):154-167. doi: 10.1037/rev0000049. Epub 2017 Jan 9.
8
Robust social categorization emerges from learning the identities of very few faces.
Psychol Rev. 2017 Mar;124(2):115-129. doi: 10.1037/rev0000048. Epub 2017 Jan 5.
9
Converging Evidence of Ubiquitous Male Bias in Human Sex Perception.
PLoS One. 2016 Feb 9;11(2):e0148623. doi: 10.1371/journal.pone.0148623. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验