Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul 07071, Republic of Korea.
Ultrasonics. 2024 Jan;136:107167. doi: 10.1016/j.ultras.2023.107167. Epub 2023 Sep 21.
The incidence of diabetes mellitus has been increasing, prompting the search for non-invasive diagnostic methods. Although current methods exist, these have certain limitations, such as low reliability and accuracy, difficulty in individual patient adjustment, and discomfort during use. This paper presents a novel approach for diagnosing diabetes using high-frequency ultrasound (HFU) and a convolutional neural network (CNN). This method is based on the observation that glucose in red blood cells (RBCs) forms glycated hemoglobin (HbA1c) and accumulates on its surface. The study incubated RBCs with different glucose concentrations, collected acoustic reflection signals from them using a custom-designed 90-MHz transducer, and analyzed the signals using a CNN. The CNN was applied to the frequency spectra and spectrograms of the signal to identify correlations between changes in RBC properties owing to glucose concentration and signal features. The results confirmed the efficacy of the CNN-based approach with a classification accuracy of 0.98. This non-invasive diagnostic technology using HFU and CNN holds promise for in vivo diagnosis without the need for blood collection.
糖尿病的发病率一直在上升,这促使人们寻求非侵入性的诊断方法。虽然目前已经存在一些方法,但这些方法存在一定的局限性,例如可靠性和准确性低、难以针对个别患者进行调整以及使用过程中不舒适等。本文提出了一种使用高频超声(HFU)和卷积神经网络(CNN)诊断糖尿病的新方法。该方法基于这样一种观察,即红细胞(RBC)中的葡萄糖形成糖化血红蛋白(HbA1c)并在其表面积聚。研究人员将 RBC 与不同浓度的葡萄糖孵育,使用定制的 90MHz 换能器从它们收集声反射信号,并使用 CNN 对信号进行分析。将 CNN 应用于信号的频谱和声谱,以识别由于葡萄糖浓度和信号特征而导致的 RBC 特性变化之间的相关性。结果证实了基于 CNN 的方法的有效性,其分类准确性为 0.98。这种使用 HFU 和 CNN 的非侵入性诊断技术有望实现无需采血的体内诊断。