Kim Min Woo, Huh Jung Wook, Noh Young Min, Seo Han Eol, Lee Dong Ha
Department of Orthopedic Surgery, Busan Medical Center, 62, Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea.
Diagnostics (Basel). 2023 Sep 16;13(18):2968. doi: 10.3390/diagnostics13182968.
: This study aimed to develop a novel method for opportunistically screening osteoporosis by measuring bone mineral density (BMD) from CT images. We addressed the limitations of commercially available software and introduced texture analysis using Hounsfield units (HU) as an alternative approach. : A total of 458 samples (296 patients) were selected from a dataset of 1320 cases (782 patients) between 1 March 2013, and 30 August 2022. BMD measurements were obtained from the ilium, femoral neck, intertrochanteric region of both femurs, and L1-L5 and sacrum spine body. The region of interest (ROI) for each patient's CT scan was defined as the maximum trabecular area of the spine body, ilium, femoral neck, and femur intertrochanter. Using gray-level co-occurrence matrices, we extracted 45 texture features from each ROI. Linear regression analysis was employed to predict BMD, and the top five influential texture features were identified. : The linear regression (LR) model yielded correlation coefficients (R-squared values) for total lumbar BMD, total lumbar BMC, total femur BMD, total femur BMC, femur neck BMD, femur neck BMC, femur intertrochanter BMD, and femur intertrochanter BMC as follows: 0.643, 0.667, 0.63, 0.635, 0.631, 0.636, 0.68, and 0.68, respectively. Among the 45 texture features considered, the top five influential factors for BMD prediction were Entropy, autocorrelate_32, autocorrelate_32_volume, autocorrelate_64, and autocorrelate_64_volume.
本研究旨在开发一种通过测量CT图像中的骨密度(BMD)来进行骨质疏松症机会性筛查的新方法。我们解决了市售软件的局限性,并引入了使用亨氏单位(HU)的纹理分析作为替代方法。
从2013年3月1日至2022年8月30日期间的1320例病例(782名患者)的数据集中选取了总共458个样本(296名患者)。从双侧髂骨、股骨颈、股骨粗隆间区域以及L1-L5和骶椎椎体获取骨密度测量值。每位患者CT扫描的感兴趣区域(ROI)定义为椎体、髂骨、股骨颈和股骨粗隆的最大小梁面积。使用灰度共生矩阵,我们从每个ROI中提取了45个纹理特征。采用线性回归分析来预测骨密度,并确定了五个最具影响力的纹理特征。
线性回归(LR)模型得出的总腰椎骨密度、总腰椎骨矿含量、总股骨骨密度、总股骨骨矿含量、股骨颈骨密度、股骨颈骨矿含量、股骨粗隆间骨密度和股骨粗隆间骨矿含量的相关系数(决定系数值)如下:分别为0.643、0.667、0.63、0.635、0.631、0.636、0.68和0.68。在考虑的45个纹理特征中,骨密度预测的五个最具影响力的因素是熵、自相关_32、自相关_32体积、自相关_64和自相关_64体积。