Suppr超能文献

在有限无耗散量子系统中模拟非厄米动力学

Emulating Non-Hermitian Dynamics in a Finite Non-Dissipative Quantum System.

作者信息

Flament Eloi, Impens François, Guéry-Odelin David

机构信息

Laboratoire Collisions, Agrégats, Réactivité, FeRMI, Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.

Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, RJ, Brazil.

出版信息

Entropy (Basel). 2023 Aug 24;25(9):1256. doi: 10.3390/e25091256.

Abstract

We discuss the emulation of non-Hermitian dynamics during a given time window using a low-dimensional quantum system coupled to a finite set of equidistant discrete states acting as an effective continuum. We first emulate the decay of an unstable state and map the quasi-continuum parameters, enabling the precise approximation of non-Hermitian dynamics. The limitations of this model, including in particular short- and long-time deviations, are extensively discussed. We then consider a driven two-level system and establish criteria for non-Hermitian dynamics emulation with a finite quasi-continuum. We quantitatively analyze the signatures of the finiteness of the effective continuum, addressing the possible emergence of non-Markovian behavior during the time interval considered. Finally, we investigate the emulation of dissipative dynamics using a finite quasi-continuum with a tailored density of states. We show through the example of a two-level system that such a continuum can reproduce non-Hermitian dynamics more efficiently than the usual equidistant quasi-continuum model.

摘要

我们讨论了在给定时间窗口内,使用与有限组等距离散态耦合的低维量子系统来模拟非厄米动力学,这些离散态充当有效连续体。我们首先模拟不稳定态的衰变并映射准连续体参数,从而实现非厄米动力学的精确近似。我们广泛讨论了该模型的局限性,特别是短时间和长时间的偏差。然后我们考虑一个受驱动的两能级系统,并建立了使用有限准连续体进行非厄米动力学模拟的标准。我们定量分析了有效连续体有限性的特征,探讨了在所考虑的时间间隔内非马尔可夫行为可能出现的情况。最后,我们研究了使用具有定制态密度的有限准连续体来模拟耗散动力学。通过一个两能级系统的例子,我们表明这样的连续体比通常的等距准连续体模型能更有效地再现非厄米动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c0c/10528010/0f44977b1f3d/entropy-25-01256-g001.jpg

相似文献

1
Emulating Non-Hermitian Dynamics in a Finite Non-Dissipative Quantum System.
Entropy (Basel). 2023 Aug 24;25(9):1256. doi: 10.3390/e25091256.
2
Time reversal of a discrete system coupled to a continuum based on non-Hermitian flip.
Sci Bull (Beijing). 2017 Jun 30;62(12):869-874. doi: 10.1016/j.scib.2017.05.012. Epub 2017 May 15.
4
Quantum Simulation of Dissipative Processes without Reservoir Engineering.
Sci Rep. 2015 May 29;5:9981. doi: 10.1038/srep09981.
5
Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature.
Entropy (Basel). 2021 Jan 25;23(2):147. doi: 10.3390/e23020147.
6
Perpetual emulation threshold of -symmetric Hamiltonians.
J Phys A Math Theor. 2018;51. doi: 10.1088/1751-8121/aacc5e.
7
Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems.
Phys Rev Lett. 2019 Oct 25;123(17):170401. doi: 10.1103/PhysRevLett.123.170401.
8
Universal Critical Behaviours in Non-Hermitian Phase Transitions.
Sci Rep. 2017 Aug 2;7(1):7165. doi: 10.1038/s41598-017-07344-z.
10
Superradiance in finite quantum systems randomly coupled to continuum.
Phys Rev E. 2019 Oct;100(4-1):042119. doi: 10.1103/PhysRevE.100.042119.

本文引用的文献

1
Accessing the degree of Majorana nonlocality in a quantum dot-optical microcavity system.
Sci Rep. 2022 Feb 7;12(1):1983. doi: 10.1038/s41598-022-05855-y.
2
Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory.
Phys Rev Lett. 2020 Nov 27;125(22):226402. doi: 10.1103/PhysRevLett.125.226402.
3
Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems.
Phys Rev Lett. 2020 Sep 18;125(12):126402. doi: 10.1103/PhysRevLett.125.126402.
4
Topological funneling of light.
Science. 2020 Apr 17;368(6488):311-314. doi: 10.1126/science.aaz8727. Epub 2020 Mar 26.
5
Topological Origin of Non-Hermitian Skin Effects.
Phys Rev Lett. 2020 Feb 28;124(8):086801. doi: 10.1103/PhysRevLett.124.086801.
6
Controlling Quantum Transport via Dissipation Engineering.
Phys Rev Lett. 2019 Nov 1;123(18):180402. doi: 10.1103/PhysRevLett.123.180402.
7
Non-Bloch Band Theory of Non-Hermitian Systems.
Phys Rev Lett. 2019 Aug 9;123(6):066404. doi: 10.1103/PhysRevLett.123.066404.
8
Cooling a Bose Gas by Three-Body Losses.
Phys Rev Lett. 2018 Nov 16;121(20):200401. doi: 10.1103/PhysRevLett.121.200401.
9
Edge States and Topological Invariants of Non-Hermitian Systems.
Phys Rev Lett. 2018 Aug 24;121(8):086803. doi: 10.1103/PhysRevLett.121.086803.
10
Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems.
Phys Rev Lett. 2018 Jul 13;121(2):026808. doi: 10.1103/PhysRevLett.121.026808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验