Lu Rending, Alexander Prasina, Natiq Hayder, Karthikeyan Anitha, Jafari Sajad, Petrzela Jiri
School of Electronic Engineering, Changzhou College of Information Technology, Changzhou 213164, China.
Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India.
Entropy (Basel). 2023 Sep 17;25(9):1352. doi: 10.3390/e25091352.
Studying simple chaotic systems with fractional-order derivatives improves modeling accuracy, increases complexity, and enhances control capabilities and robustness against noise. This paper investigates the dynamics of the simple Sprott-B chaotic system using fractional-order derivatives. This study involves a comprehensive dynamical analysis conducted through bifurcation diagrams, revealing the presence of coexisting attractors. Additionally, the synchronization behavior of the system is examined for various derivative orders. Finally, the integer-order and fractional-order electronic circuits are implemented to validate the theoretical findings. This research contributes to a deeper understanding of the Sprott-B system and its fractional-order dynamics, with potential applications in diverse fields such as chaos-based secure communications and nonlinear control systems.
研究具有分数阶导数的简单混沌系统可提高建模精度、增加复杂性,并增强控制能力以及抗噪声鲁棒性。本文使用分数阶导数研究简单的斯普罗特 - B混沌系统的动力学。该研究涉及通过分岔图进行的全面动力学分析,揭示了共存吸引子的存在。此外,还针对不同的导数阶数研究了系统的同步行为。最后,实现了整数阶和分数阶电子电路以验证理论结果。这项研究有助于更深入地理解斯普罗特 - B系统及其分数阶动力学,在基于混沌的安全通信和非线性控制系统等不同领域具有潜在应用。