Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China.
Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Int J Mol Sci. 2023 Sep 15;24(18):14128. doi: 10.3390/ijms241814128.
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
哺乳动物大脑皮层经历严格调控的发育过程。详细的原位可视化、这些动态过程的成像以及体内功能基因研究显著增强了我们对大脑发育和相关疾病的理解。本综述介绍了用于研究大脑疾病相关分子机制的体内电穿孔的基本技术和最新进展。体内电穿孔(IUE)广泛用于可视化和修饰这些过程,包括在人类疾病中强制表达病理性突变体,因此该方法可用于建立动物疾病模型。先进技术的出现,如基因组编辑,包括从头敲除、敲入、表观遗传编辑和时空基因调控,进一步扩展了我们的研究工具列表。这些工具包括 iON 表达开关,用于精确控制外源基因的时间和拷贝数,以及 TEMPO,用于研究基因的时间效应。我们还介绍了 iGONAD 方法,这是一种通过输卵管核酸递送途径进行的改良基因组编辑方法,作为一种新的基因组编辑技术,加速了大脑发育的探索。这些先进的体内电穿孔方法有望为与人类大脑疾病相关的病理状况提供有价值的见解。