Suppr超能文献

生物成因 PbS 量子点的特性研究。

Characterization of Biogenic PbS Quantum Dots.

机构信息

Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8530, Japan.

Graduate School of Advanced Science of Matter, Hiroshima University, Hiroshima 739-8530, Japan.

出版信息

Int J Mol Sci. 2023 Sep 15;24(18):14149. doi: 10.3390/ijms241814149.

Abstract

Heavy metals in a polluted environment are toxic to life. However, some microorganisms can remove or immobilize heavy metals through biomineralization. These bacteria also form minerals with compositions similar to those of semiconductors. Here, this bioprocess was used to fabricate semiconductors with low energy consumption and cost. Bacteria that form lead sulfide (PbS) nanoparticles were screened, and the crystallinity and semiconductor properties of the resulting nanoparticles were characterized. Bacterial consortia that formed PbS nanoparticles were obtained. Extracellular particle size ranged from 3.9 to 5.5 nm, and lattice fringes were observed. The lattice fringes and electron diffraction spectra corresponded to crystalline PbS. The X-ray diffraction (XRD) patterns of bacterial PbS exhibited clear diffraction peaks. The experimental and theoretical data of the diffraction angles on each crystal plane of polycrystalline PbS were in good agreement. Synchrotron XRD measurements showed no crystalline impurity-derived peaks. Thus, bacterial biomineralization can form ultrafine crystalline PbS nanoparticles. Optical absorption and current-voltage measurements of PbS were obtained to characterize the semiconductor properties; the results showed semiconductor quantum dot behavior. Moreover, the current increased under light irradiation when PbS nanoparticles were used. These results suggest that biogenic PbS has band gaps and exhibits the general fundamental characteristics of a semiconductor.

摘要

受污染环境中的重金属对生命有毒。然而,一些微生物可以通过生物矿化去除或固定重金属。这些细菌还与半导体组成相似的矿物。在这里,该生物过程用于以低能耗和低成本制造半导体。筛选出形成硫化铅 (PbS) 纳米颗粒的细菌,并对所得纳米颗粒的结晶度和半导体性质进行了表征。获得了形成 PbS 纳米颗粒的细菌共生体。细胞外颗粒尺寸范围为 3.9 至 5.5nm,并观察到晶格条纹。晶格条纹和电子衍射谱与结晶 PbS 相对应。细菌 PbS 的 X 射线衍射 (XRD) 图谱显示出清晰的衍射峰。每个多晶 PbS 晶面的衍射角的实验和理论数据吻合得很好。同步辐射 XRD 测量没有显示出结晶杂质衍生的峰。因此,细菌生物矿化可以形成超精细的结晶 PbS 纳米颗粒。获得 PbS 的光吸收和电流-电压测量以表征半导体性质;结果表明半导体量子点行为。此外,当使用 PbS 纳米颗粒时,电流在光照射下增加。这些结果表明,生物成因的 PbS 具有带隙,并表现出半导体的一般基本特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0374/10531774/5ebc3fa8e43e/ijms-24-14149-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验