Circular Transformation Lab, TH Köln-University of Applied Sciences, 51379 Leverkusen, Germany.
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
Int J Mol Sci. 2023 Sep 21;24(18):14367. doi: 10.3390/ijms241814367.
This study explores the potential of robust, strongly basic type I ion exchange resins-specifically, Amberlyst A26 OH and Lewatit K 6465-as catalysts for the aldol condensation of citral and acetone, yielding pseudoionone. Emphasis is placed on their long-term stability and commendable performance in continuous operational settings. The aldol reaction, which traditionally is carried out using aqueous sodium hydroxide as the catalyst, holds the potential for enhanced sustainability and reduced waste production through the use of basic ion exchange resins in heterogeneous catalysis. Density Functional Theory (DFT) calculations are employed to investigate catalyst deactivation mechanisms. The result of these calculations indicates that the active sites of Amberlyst A26 OH are cleaved more easily than the active sites of Lewatit K 6465. However, the experimental data show a gradual decline in catalytic activity for both resins. Batch experiments reveal Amberlyst A26 OH's active sites diminishing, while Lewatit K 6465 maintains relative consistency. This points to distinct deactivation processes for each catalyst. The constant count of basic sites in Lewatit K 6465 during the reaction suggests additional factors due to its unique polymer structure. This intriguing observation also highlights an exceptional temperature stability for Lewatit K 6465 compared to Amberlyst A26 OH, effectively surmounting one of the prominent challenges associated with the utilization of ion exchange resins in catalytic applications.
本研究探索了强碱性 I 型离子交换树脂——Amberlyst A26 OH 和 Lewatit K 6465——作为催化剂用于柠檬醛和丙酮的羟醛缩合反应生成假性紫罗兰酮的潜力。重点在于它们在连续操作条件下的长期稳定性和良好性能。该羟醛缩合反应传统上使用氢氧化钠水溶液作为催化剂,通过在多相催化中使用碱性离子交换树脂,有可能提高可持续性并减少废物产生。密度泛函理论(DFT)计算用于研究催化剂失活机制。这些计算的结果表明,Amberlyst A26 OH 的活性位比 Lewatit K 6465 的活性位更容易断裂。然而,实验数据显示两种树脂的催化活性都逐渐下降。间歇实验表明 Amberlyst A26 OH 的活性位减少,而 Lewatit K 6465 保持相对稳定。这表明每个催化剂都有不同的失活过程。Lewatit K 6465 在反应过程中碱性位的数量保持不变,这表明由于其独特的聚合物结构,存在其他因素。这一有趣的观察结果还突出了 Lewatit K 6465 与 Amberlyst A26 OH 相比具有出色的温度稳定性,有效地克服了在催化应用中使用离子交换树脂所面临的一个突出挑战。