Gustavsen Kim Robert, Feng Tao, Huang Hao, Li Gang, Narkiewicz Urszula, Wang Kaiying
Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway.
Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Materials (Basel). 2023 Sep 7;16(18):6117. doi: 10.3390/ma16186117.
Titanium dioxide (TiO) has been proven to be an excellent material for mitigating the continuous impact of elevated carbon dioxide concentrations. Carbon doping has emerged as a promising strategy to enhance the CO reduction performance of TiO. In this study, we investigated the effects of carbon doping on TiO using density functional theory (DFT) calculations. Two carbon doping concentrations were considered (4% and 6%), denoted as TiO-2C and TiO-3C, respectively. The results showed that after carbon doping, the band gaps of TiO-2C and TiO-3C were reduced to 1.58 eV and 1.47 eV, respectively, which is lower than the band gap of pure TiO (2.13 eV). This indicates an effective improvement in the electronic structure of TiO. Barrier energy calculations revealed that compared to pure TiO (0.65 eV), TiO-2C (0.54 eV) and TiO-3C (0.59 eV) exhibited lower energy barriers, facilitating the transition to *COOH intermediates. These findings provide valuable insights into the electronic structure changes induced by carbon doping in TiO, which can contribute to the development of sustainable energy and environmental conservation measures to address global climate challenges.
二氧化钛(TiO₂)已被证明是一种缓解二氧化碳浓度持续上升影响的优秀材料。碳掺杂已成为提高TiO₂ 二氧化碳还原性能的一种有前景的策略。在本研究中,我们使用密度泛函理论(DFT)计算研究了碳掺杂对TiO₂ 的影响。考虑了两种碳掺杂浓度(4%和6%),分别表示为TiO₂-2C和TiO₂-3C。结果表明,碳掺杂后,TiO₂-2C和TiO₂-3C的带隙分别降至1.58 eV和1.47 eV,低于纯TiO₂ 的带隙(2.13 eV)。这表明TiO₂ 的电子结构得到了有效改善。势垒能量计算表明,与纯TiO₂(0.65 eV)相比,TiO₂-2C(0.54 eV)和TiO₂-3C(0.59 eV)表现出更低的势垒,有利于向*COOH中间体的转变。这些发现为TiO₂ 中碳掺杂引起的电子结构变化提供了有价值的见解,这有助于制定可持续能源和环境保护措施,以应对全球气候挑战。