文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于亚甲基蓝吸附的FeO核-TiO/mesoSiO和FeO核-mesoSiO/TiO双壳层纳米颗粒的制备:动力学、等温线及热力学表征

Fabrication of FeO core-TiO/mesoSiO and FeO core-mesoSiO/TiO Double Shell Nanoparticles for Methylene Blue Adsorption: Kinetic, Isotherms and Thermodynamic Characterization.

作者信息

El-Toni Ahmed Mohamed, Habila Mohamed A, Sheikh Mohamed, El-Mahrouky Mohamed, Al-Awadi Abdulrhman S, Labis Joselito P, ALOthman Zeid A

机构信息

King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.

Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt.

出版信息

Nanomaterials (Basel). 2023 Sep 12;13(18):2548. doi: 10.3390/nano13182548.


DOI:10.3390/nano13182548
PMID:37764578
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10537299/
Abstract

Herein, FeO core-TiO/mesoSiO and FeO core-mesoSiO/TiO double shell nanoparticles were prepared by first (R1) and second (R2) routes and applied for the removal of methylene blue. The reported adsorption capacities for R1-0.2, R1-0.4 and R2 samples were 128, 118 and 133 mg.g, respectively, which were obtained after 80 min as equilibrium contact time, and pH of 6 using a methylene blue concentration of 200 ppm. The adsorption of methylene blue using the prepared FeO core-meso SiO/TiO double shell was analyzed by kinetic and isotherms models. In addition, thermodynamic investigations were applied to assess the spontaneous nature of the process. The obtained results confirmed that the pseudo-second order model is well fitted with the adsorption data and the Freundlich-isotherm assumption suggested a multilayer adsorption mechanism. In addition, results of the thermodynamic investigation indicated that ΔG° was in the range of -2.3 to -6.8 kJ/mol for R1-0.2, -2.8 to -6.3 kJ/mol for R1-0.4 and -2.0 to -5.2 kJ/mol for R2. In addition, the ΔH° and ΔS° values were found in the range of 26.4 to 36.19 kJ.mol and 94.9 to 126.3 Jmol K, respectively. These results confirm that the surfaces of FeO core-mesoSiO/TiO and FeO core-TiO/mesoSiO double shell exhibit a spontaneous tendency to adsorb methylene blue from the aqueous solutions. The achieved performance of FeO core-meso SiO/TiO and FeO core-TiO/meso SiO double shell as adsorbent for methylene blue removal will encourage future research investigations on the removal of a broad range of contaminants from wastewater.

摘要

在此,通过第一种(R1)和第二种(R2)路线制备了FeO核-TiO/mesoSiO和FeO核-mesoSiO/TiO双壳纳米颗粒,并将其用于去除亚甲基蓝。R1-0.2、R1-0.4和R2样品的报道吸附容量分别为128、118和133 mg/g,这些容量是在平衡接触时间80分钟、pH值为6且亚甲基蓝浓度为200 ppm的条件下获得的。使用所制备的FeO核-meso SiO/TiO双壳对亚甲基蓝的吸附通过动力学和等温线模型进行分析。此外,还进行了热力学研究以评估该过程的自发性质。所得结果证实,伪二级模型与吸附数据拟合良好,弗伦德利希等温线假设表明存在多层吸附机制。此外,热力学研究结果表明,R1-0.2的ΔG°在-2.3至-6.8 kJ/mol范围内,R1-0.4的ΔG°在-2.8至-6.3 kJ/mol范围内,R2的ΔG°在-2.0至-5.2 kJ/mol范围内。此外,ΔH°和ΔS°值分别在26.4至36.19 kJ/mol和94.9至126.3 J/(mol·K)范围内。这些结果证实,FeO核-mesoSiO/TiO和FeO核-TiO/mesoSiO双壳的表面表现出从水溶液中自发吸附亚甲基蓝的倾向。FeO核-meso SiO/TiO和FeO核-TiO/meso SiO双壳作为去除亚甲基蓝的吸附剂所取得的性能将鼓励未来开展关于从废水中去除广泛污染物的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/f86597299772/nanomaterials-13-02548-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/823dfdeae6a5/nanomaterials-13-02548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/1f966fd063e2/nanomaterials-13-02548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/1588a040b11a/nanomaterials-13-02548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/3b0f81d4ff2d/nanomaterials-13-02548-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/fb0f3259c259/nanomaterials-13-02548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/cc53a3f68089/nanomaterials-13-02548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/d78f1d10ad6d/nanomaterials-13-02548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/75b73b048175/nanomaterials-13-02548-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/89c3361ad512/nanomaterials-13-02548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/451731611b25/nanomaterials-13-02548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/fe41745827de/nanomaterials-13-02548-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/85a3fbcd1a0a/nanomaterials-13-02548-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/f86597299772/nanomaterials-13-02548-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/823dfdeae6a5/nanomaterials-13-02548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/1f966fd063e2/nanomaterials-13-02548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/1588a040b11a/nanomaterials-13-02548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/3b0f81d4ff2d/nanomaterials-13-02548-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/fb0f3259c259/nanomaterials-13-02548-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/cc53a3f68089/nanomaterials-13-02548-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/d78f1d10ad6d/nanomaterials-13-02548-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/75b73b048175/nanomaterials-13-02548-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/89c3361ad512/nanomaterials-13-02548-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/451731611b25/nanomaterials-13-02548-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/fe41745827de/nanomaterials-13-02548-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/85a3fbcd1a0a/nanomaterials-13-02548-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ac/10537299/f86597299772/nanomaterials-13-02548-g013.jpg

相似文献

[1]
Fabrication of FeO core-TiO/mesoSiO and FeO core-mesoSiO/TiO Double Shell Nanoparticles for Methylene Blue Adsorption: Kinetic, Isotherms and Thermodynamic Characterization.

Nanomaterials (Basel). 2023-9-12

[2]
A study on the uptake of methylene blue by biodegradable and eco-friendly carboxylated starch grafted polyvinyl pyrrolidone.

Environ Res. 2022-12

[3]
Magnetic FeO nanoparticles loaded guava leaves powder impregnated into calcium alginate hydrogel beads (FeO-GLP@CAB) for efficient removal of methylene blue dye from aqueous environment: Synthesis, characterization, and its adsorption performance.

Int J Biol Macromol. 2023-8-15

[4]
One-pot synthesis of C₁₈-functionalized core-shell magnetic mesoporous silica composite as efficient sorbent for organic dye.

J Colloid Interface Sci. 2015-2-19

[5]
[Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/ graphene oxide nanoparticles].

Huan Jing Ke Xue. 2014-5

[6]
Ecofriendly Synthesis of Magnetic Composites Loaded on Rice Husks for Acid Blue 25 Decontamination: Adsorption Kinetics, Thermodynamics, and Isotherms.

Molecules. 2023-10-17

[7]
Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.

Bioresour Technol. 2008-4

[8]
Hybrid magnetic core-shell TiO@CoFeO composite towards visible light-driven photodegradation of Methylene blue dye and the heavy metal adsorption: isotherm and kinetic study.

J Environ Health Sci Eng. 2022-1-27

[9]
Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay - a comparative study.

RSC Adv. 2021-9-9

[10]
Application of longan shell as non-conventional low-cost adsorbent for the removal of cationic dye from aqueous solution.

Spectrochim Acta A Mol Biomol Spectrosc. 2016-4-15

引用本文的文献

[1]
Development of TiO-CaCO Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NO from the Environment.

Nanomaterials (Basel). 2024-1-6

本文引用的文献

[1]
Facile Strategy for Fabricating an Organosilica-Modified FeO (OS/FeO) Hetero-nanocore and OS/FeO@SiO Core-Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency.

ACS Omega. 2023-2-15

[2]
Starch Biocryogel for Removal of Methylene Blue by Batch Adsorption.

Polymers (Basel). 2022-12-18

[3]
Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches.

Compr Rev Food Sci Food Saf. 2014-7

[4]
Synthesis of the magnetic core-shell bi-metallic and tri-metallic metal-organic framework nanocomposites for dye adsorption.

Water Environ Res. 2021-6

[5]
A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment.

J Hazard Mater. 2021-1-5

[6]
Bacterial degradation of anthraquinone dyes.

J Zhejiang Univ Sci B. 2019-6

[7]
Nanomaterials for the Removal of Heavy Metals from Wastewater.

Nanomaterials (Basel). 2019-3-12

[8]
Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO Nanoparticles.

Photochem Photobiol. 2018-6-14

[9]
Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies.

Ecotoxicol Environ Saf. 2018-1-4

[10]
One-Step Carbon Coating and Polyacrylamide Functionalization of Fe₃O₄ Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals.

Molecules. 2017-11-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索