Grundsteins Karlis, Diedkova Kateryna, Korniienko Viktoriia, Stoppel Anita, Balakin Sascha, Jekabsons Kaspars, Riekstina Una, Waloszczyk Natalia, Kołkowska Agata, Varava Yuliia, Opitz Jörg, Simka Wojciech, Beshchasna Natalia, Pogorielov Maksym
Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia.
Biomedical Research Centre, Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine.
Nanomaterials (Basel). 2023 Sep 20;13(18):2601. doi: 10.3390/nano13182601.
Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in acute coronary disease treatment but are associated with restenosis in the stent. Drug-eluting stents (DES) have improved restenosis rates but present long-term complications. To overcome these limitations, nanomaterial-based modifications of the stent surfaces have been explored. This study focuses on the incorporation of detonation nanodiamonds (NDs) into a plasma electrolytic oxidation (PEO) coating on nitinol stents to enhance their performance. The functionalized ND showed a high surface-to-volume ratio and was incorporated into the oxide layer to mimic high-density lipoproteins (HDL) for reverse cholesterol transport (RCT). We provide substantial characterization of DND, including stability in two media (acetone and water), Fourier transmission infrared spectroscopy, and nanoparticle tracking analysis. The characterization of the modified ND revealed successful functionalization and adequate suspension stability. Scanning electron microscopy with EDX demonstrated successful incorporation of DND into the ceramic layer, but the formation of a porous surface is possible only in the high-voltage PEO. The biological assessment demonstrated the biocompatibility of the decorated nitinol surface with enhanced cell adhesion and proliferation. This study presents a novel approach to improving the performance of nitinol stents using ND-based surface modifications, providing a promising avenue for cardiovascular disease.
心血管疾病(CVDs)仍然是欧洲人群死亡的主要原因,主要归因于动脉粥样硬化及随后的并发症。尽管他汀类药物能有效预防动脉粥样硬化,但它们无法减小斑块大小和血管狭窄程度。裸金属支架(BMS)在急性冠状动脉疾病治疗中显示出前景,但与支架内再狭窄有关。药物洗脱支架(DES)改善了再狭窄率,但存在长期并发症。为克服这些局限性,人们探索了基于纳米材料的支架表面改性。本研究聚焦于将爆轰纳米金刚石(NDs)掺入镍钛诺支架的等离子体电解氧化(PEO)涂层中,以提高其性能。功能化的ND显示出高的表面体积比,并被掺入氧化层以模拟高密度脂蛋白(HDL)进行逆向胆固醇转运(RCT)。我们对DND进行了大量表征,包括在两种介质(丙酮和水)中的稳定性、傅里叶透射红外光谱和纳米颗粒跟踪分析。改性ND的表征显示功能化成功且具有足够的悬浮稳定性。带有能谱仪的扫描电子显微镜证明DND成功掺入陶瓷层,但只有在高压PEO中才可能形成多孔表面。生物学评估证明了装饰后的镍钛诺表面具有生物相容性,细胞黏附和增殖增强。本研究提出了一种使用基于ND的表面改性来改善镍钛诺支架性能的新方法,为心血管疾病提供了一条有前景的途径。