Komisarek Daniel, Demirbas Fulya, Haj Hassani Sohi Takin, Merz Klaus, Schauerte Carsten, Vasylyeva Vera
Laboratory for Crystal Engineering, Department of Inorganic and Structural Chemistry 1, Heinrich-Heine-University Dueseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
Inorganic Chemistry 1, Ruhr-University Bochum, Universitaetstrasse 150, 44801 Bochum, Germany.
Pharmaceutics. 2023 Sep 10;15(9):2299. doi: 10.3390/pharmaceutics15092299.
This study exploits the polymorphism and multi-component crystal formation of γ-amino butanoic acid (GABA) and its pharmaceutically active derivative, gabapentin. Two polymorphs of GABA and both polymorphs of gabapentin are structurally revisited, together with gabapentin monohydrate. Hereby, GABA form is only accessible under special conditions using additives, whereas gabapentin converts to the monohydrate even in the presence of trace amounts of water. Different accessibilities and phase stabilities of these phases are still not fully clarified. Thus, indicators of phase stability are discussed involving intermolecular interactions, molecular conformations, and crystallization environment. Calculated lattice energy differences for polymorphs reveal their similar stability. Quantification of the hydrogen bond strengths with the atoms-in-molecules (AIM) model in conjunction with non-covalent interaction (NCI) plots also shows similar hydrogen bond binding energy values for all polymorphs. We demonstrate that differences in the interacting modes, in an interplay with the intermolecular repulsion, allow the formation of the desired phase under different crystallization environments. Salts and co-crystals of GABA and gabapentin with fumaric as well as succinic acid further serve as models to highlight how strongly HBs act as the motif-directing force in the solid-phase GABA-analogs. Six novel multi-component entities were synthesized, and structural and computational analysis was performed: GABA fumarate (2:1); two gabapentin fumarates (2:1) and (1:1); two GABA succinates (2:1) and (1:1); and a gabapentin:succinic acid co-crystal. Energetically highly attractive carboxyl/carboxylate interaction overcomes other factors and dominates the multi-component phase formation. Decisive commonalities in the crystallization behavior of zwitterionic GABA-derivatives are discussed, which show how they can and should be understood as a whole for possible related future products.
本研究利用了γ-氨基丁酸(GABA)及其药物活性衍生物加巴喷丁的多晶型性和多组分晶体形成。对GABA的两种多晶型以及加巴喷丁的两种多晶型与加巴喷丁一水合物进行了结构再研究。在此,GABA晶型仅在使用添加剂的特殊条件下才可获得,而加巴喷丁即使在存在痕量水的情况下也会转化为一水合物。这些物相不同的可及性和相稳定性仍未完全阐明。因此,讨论了涉及分子间相互作用、分子构象和结晶环境的相稳定性指标。计算得到的多晶型物晶格能量差异揭示了它们相似的稳定性。结合分子中的原子(AIM)模型和非共价相互作用(NCI)图对氢键强度进行量化,结果也表明所有多晶型物的氢键结合能值相似。我们证明,相互作用模式的差异与分子间排斥相互作用,使得在不同的结晶环境下能够形成所需的物相。GABA和加巴喷丁与富马酸以及琥珀酸形成的盐和共晶体进一步作为模型,以突出氢键在固相GABA类似物中作为 motif 导向力的作用强度。合成了六个新型多组分实体,并进行了结构和计算分析:富马酸GABA(2:1);两种富马酸加巴喷丁(2:1)和(1:1);两种琥珀酸GABA(2:1)和(1:1);以及一种加巴喷丁:琥珀酸共晶体。能量上极具吸引力的羧基/羧酸盐相互作用克服了其他因素,并主导了多组分相的形成。讨论了两性离子GABA衍生物结晶行为中的决定性共性,展示了如何将它们作为一个整体来理解,以便用于未来可能的相关产品。