Suppr超能文献

基于生成对抗网络(GAN)的Web应用程序自主渗透测试

Generative Adversarial Network (GAN)-Based Autonomous Penetration Testing for Web Applications.

作者信息

Chowdhary Ankur, Jha Kritshekhar, Zhao Ming

机构信息

6sense Insights Inc., San Francisco, CA 94105, USA.

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA.

出版信息

Sensors (Basel). 2023 Sep 21;23(18):8014. doi: 10.3390/s23188014.

Abstract

The web application market has shown rapid growth in recent years. The expansion of Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) has created new web-based communication and sensing frameworks. Current security research utilizes source code analysis and manual exploitation of web applications, to identify security vulnerabilities, such as Cross-Site Scripting (XSS) and SQL Injection, in these emerging fields. The attack samples generated as part of web application penetration testing on sensor networks can be easily blocked, using Web Application Firewalls (WAFs). In this research work, we propose an autonomous penetration testing framework that utilizes Generative Adversarial Networks (GANs). We overcome the limitations of vanilla GANs by using conditional sequence generation. This technique helps in identifying key features for XSS attacks. We trained a generative model based on attack labels and attack features. The attack features were identified using semantic tokenization, and the attack payloads were generated using conditional sequence GAN. The generated attack samples can be used to target web applications protected by WAFs in an automated manner. This model scales well on a large-scale web application platform, and it saves the significant effort invested in manual penetration testing.

摘要

近年来,Web应用市场呈现出快速增长的态势。无线传感器网络(WSNs)和物联网(IoT)的扩展创造了新的基于Web的通信和传感框架。当前的安全研究利用Web应用的源代码分析和手动利用,来识别这些新兴领域中的安全漏洞,如跨站脚本攻击(XSS)和SQL注入。作为传感器网络上Web应用渗透测试一部分生成的攻击样本,可以使用Web应用防火墙(WAF)轻松阻止。在这项研究工作中,我们提出了一种利用生成对抗网络(GANs)的自主渗透测试框架。我们通过使用条件序列生成克服了普通GAN的局限性。该技术有助于识别XSS攻击的关键特征。我们基于攻击标签和攻击特征训练了一个生成模型。使用语义分词识别攻击特征,并使用条件序列GAN生成攻击载荷。生成的攻击样本可用于以自动化方式针对受WAF保护的Web应用。该模型在大规模Web应用平台上扩展性良好,并且节省了投入到手动渗透测试中的大量精力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2314/10534908/33476eeeacda/sensors-23-08014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验