Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia.
BMC Res Notes. 2023 Sep 28;16(1):233. doi: 10.1186/s13104-023-06488-8.
In this paper, a numerical scheme is designed for solving singularly perturbed Fredholm integro-differential equation. The scheme is constructed via the exact (non-standard) finite difference method to approximate the differential part and the composite Simpson's 1/3 rule for the integral part of the equation.
The stability and uniform convergence analysis are demonstrated using solution bound and the truncation error bound. For three model examples, the maximum absolute error and the rate of convergence for different values of the perturbation parameter and mesh size are tabulated. The computational result shows, the proposed method is second-order uniformly convergent which is in a right agreement with the theoretical result.
本文设计了一种数值方案,用于求解奇异摄动 Fredholm 积分微分方程。该方案通过精确(非标准)有限差分法来近似方程的微分部分,以及复合辛普森 1/3 规则来近似方程的积分部分。
通过解的界和截断误差界,对稳定性和一致收敛性进行了分析。针对三个模型示例,给出了不同摄动参数和网格尺寸下的最大绝对误差和收敛率。计算结果表明,所提出的方法具有二阶一致收敛性,与理论结果相符。