Pincus Lauren N, Petrović Predrag V, Gonzalez Isabel S, Stavitski Eli, Fishman Zachary S, Anastas Paul T, Zimmerman Julie B
Yale University, School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, United States.
Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511.
Chem Eng J. 2021 May 15;412. doi: 10.1016/j.cej.2021.128582. Epub 2021 Jan 20.
The ability of transition metal chitosan complexes (TMCs) of varying valence and charge to selectively adsorb As(III) and As(V) over their strongest adsorptive competitor, phosphate is examined. Fe(III)-chitosan, Al(III)-chitosan, Ni(II)-chitosan, Cu(II)-chitosan, and Zn(II)-chitosan are synthesized, characterized via Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray Diffractometry (XRD), and their selective sorption capabilities towards As(III) and As(V) in the presence of phosphate are evaluated. It was found that the stability of the metal-chitosan complexes varied, with Al(III)- and Zn(II)-chitosan forming very unstable complexes resulting in precipitation of gibbsite, and Wulfingite and Zincite, respectively. Cu(II)-, Ni(II)-, and Fe(III)-chitosan formed a mixture of monodentate and bidentate complexes. The TMCs which formed the bidentate complex (Cu(II)-, Ni(II)-, and Fe(III)-) showed greater adsorption capability for As(V) in the presence of phosphate. Using the binary separation factor , it can be shown that only Fe(III)-chitosan is selective for As(V) and As(III) over phosphate. Density Functional Theory (DFT) modeling and extended X-ray adsorption fine structure (EXAFS) determined that Fe(III)-chitosan and Ni(II)-chitosan adsorbed As(V) and As(III) via inner-sphere complexation, while Cu(II)-chitosan formed mainly outer-sphere complexes with As(V) and As(III). These differences in complexation likely result in the observed differences in selective adsorption capability towards As(V) and As(III) over phosphate. It is hypothesized that the greater affinity of Fe(III)- and Ni(II)-chitosan towards As(V) and As(III) compared to Cu(II)-chitosan is due to their forming less-stable, more reactive chitosan complexes as predicted by the Irving Williams Series.
研究了不同价态和电荷的过渡金属壳聚糖配合物(TMCs)在其最强吸附竞争剂磷酸盐存在下选择性吸附As(III)和As(V)的能力。合成了Fe(III)-壳聚糖、Al(III)-壳聚糖、Ni(II)-壳聚糖、Cu(II)-壳聚糖和Zn(II)-壳聚糖,通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)和X射线衍射(XRD)对其进行表征,并评估了它们在磷酸盐存在下对As(III)和As(V)的选择性吸附能力。结果发现,金属-壳聚糖配合物的稳定性各不相同,Al(III)-壳聚糖和Zn(II)-壳聚糖形成非常不稳定的配合物,分别导致三水铝石、硫铜铅矿和红锌矿沉淀。Cu(II)-、Ni(II)-和Fe(III)-壳聚糖形成了单齿和双齿配合物的混合物。形成双齿配合物的TMCs(Cu(II)-、Ni(II)-和Fe(III)-)在磷酸盐存在下对As(V)表现出更大的吸附能力。使用二元分离因子可以表明,只有Fe(III)-壳聚糖对As(V)和As(III)的选择性高于磷酸盐。密度泛函理论(DFT)建模和扩展X射线吸收精细结构(EXAFS)确定,Fe(III)-壳聚糖和Ni(II)-壳聚糖通过内球络合吸附As(V)和As(III),而Cu(II)-壳聚糖与As(V)和As(III)主要形成外球络合物。这些络合差异可能导致观察到的对As(V)和As(III)相对于磷酸盐的选择性吸附能力差异。据推测,与Cu(II)-壳聚糖相比,Fe(III)-和Ni(II)-壳聚糖对As(V)和As(III)具有更大的亲和力,这是由于它们形成了如欧文-威廉姆斯序列所预测的稳定性较低、反应性更高的壳聚糖配合物。