Suppr超能文献

基于数据驱动的信号检测方法的开发与应用,用于监测生物制品批间不良事件的变异性。

Development and Application of a Data-Driven Signal Detection Method for Surveillance of Adverse Event Variability Across Manufacturing Lots of Biologics.

机构信息

Massachusetts Institute of Technology, Operations Research Center, Cambridge, MA, USA.

Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, USA.

出版信息

Drug Saf. 2023 Nov;46(11):1117-1131. doi: 10.1007/s40264-023-01349-6. Epub 2023 Sep 29.

Abstract

INTRODUCTION

Postmarketing drug safety surveillance research has focused on the product-patient interaction as the primary source of variability in clinical outcomes. However, the inherent complexity of pharmaceutical manufacturing and distribution, especially of biologic drugs, also underscores the importance of risks related to variability in manufacturing and supply chain conditions that could potentially impact clinical outcomes. We propose a data-driven signal detection method called HMMScan to monitor for manufacturing lot-dependent changes in adverse event (AE) rates, and herein apply it to a biologic drug.

METHODS

The HMMScan method chooses the best-fitting candidate from a family of probabilistic Hidden Markov Models to detect temporal correlations in per lot AE rates that could signal clinically relevant variability in manufacturing and supply chain conditions. Additionally, HMMScan indicates the particular lots most likely to be related to risky states of the manufacturing or supply chain condition. The HMMScan method was validated on extensive simulated data and applied to three actual lot sequences of a major biologic drug by combining lot metadata from the manufacturer with AE reports from the US FDA Adverse Event Reporting System (FAERS).

RESULTS

Extensive method validation on simulated data indicated that HMMScan is able to correctly detect the presence or absence of variable manufacturing and supply chain conditions for contiguous sequences of 100 lots or more when changes in these conditions have a meaningful impact on AE rates. Applying the HMMScan method to FAERS data, two of the three actual lot sequences examined exhibited evidence of potential manufacturing or supply chain-related variability.

CONCLUSIONS

HMMScan could be utilized by both manufacturers and regulators to automate lot variability monitoring and inform targeted root-cause analysis. Broad application of HMMScan would rely on a well-developed data input pipeline. The proposed method is implemented in an open-source GitHub repository.

摘要

简介

上市后药物安全监测研究主要集中在产品-患者相互作用上,将其作为临床结果变异性的主要来源。然而,制药生产和分销的固有复杂性,尤其是生物制药的复杂性,也强调了与生产和供应链条件变异性相关的风险的重要性,这些风险可能会对临床结果产生影响。我们提出了一种名为 HMMScan 的数据驱动信号检测方法,用于监测不良事件(AE)发生率与生产批次相关的变化,并将其应用于一种生物制药。

方法

HMMScan 方法从概率隐马尔可夫模型(Hidden Markov Model)的家族中选择最佳拟合的候选模型,以检测每个批次 AE 率中的时间相关性,这些相关性可能表明生产和供应链条件中的临床相关变异性。此外,HMMScan 还指示出与制造或供应链条件的危险状态最相关的特定批次。该 HMMScan 方法在大量模拟数据上进行了验证,并通过将制造商的批次元数据与美国 FDA 不良事件报告系统(FAERS)的 AE 报告相结合,应用于一种主要生物制药的三个实际批次序列。

结果

对模拟数据的广泛方法验证表明,当这些条件的变化对 AE 率有显著影响时,HMMScan 能够正确检测到连续 100 批或更多批次的生产和供应链条件的存在或不存在。将 HMMScan 方法应用于 FAERS 数据,所检查的三个实际批次序列中的两个显示出潜在的制造或供应链相关变异性的证据。

结论

HMMScan 既可以由制造商也可以由监管机构用于自动化批次变异性监测,并为有针对性的根本原因分析提供信息。HMMScan 的广泛应用将依赖于一个完善的数据输入管道。该方法在一个开源的 GitHub 存储库中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验