Suppr超能文献

使用游戏化网站识别帕金森病:机器学习开发与可用性研究

Parkinson Disease Recognition Using a Gamified Website: Machine Learning Development and Usability Study.

作者信息

Parab Shubham, Boster Jerry, Washington Peter

机构信息

University of Hawaii at Manoa, Honolulu, HI, United States.

Hawaii Parkinson Association, Honolulu, HI, United States.

出版信息

JMIR Form Res. 2023 Sep 29;7:e49898. doi: 10.2196/49898.

Abstract

BACKGROUND

Parkinson disease (PD) affects millions globally, causing motor function impairments. Early detection is vital, and diverse data sources aid diagnosis. We focus on lower arm movements during keyboard and trackpad or touchscreen interactions, which serve as reliable indicators of PD. Previous works explore keyboard tapping and unstructured device monitoring; we attempt to further these works with structured tests taking into account 2D hand movement in addition to finger tapping. Our feasibility study uses keystroke and mouse movement data from a remotely conducted, structured, web-based test combined with self-reported PD status to create a predictive model for detecting the presence of PD.

OBJECTIVE

Analysis of finger tapping speed and accuracy through keyboard input and analysis of 2D hand movement through mouse input allowed differentiation between participants with and without PD. This comparative analysis enables us to establish clear distinctions between the two groups and explore the feasibility of using motor behavior to predict the presence of the disease.

METHODS

Participants were recruited via email by the Hawaii Parkinson Association (HPA) and directed to a web application for the tests. The 2023 HPA symposium was also used as a forum to recruit participants and spread information about our study. The application recorded participant demographics, including age, gender, and race, as well as PD status. We conducted a series of tests to assess finger tapping, using on-screen prompts to request key presses of constant and random keys. Response times, accuracy, and unintended movements resulting in accidental presses were recorded. Participants performed a hand movement test consisting of tracing straight and curved on-screen ribbons using a trackpad or mouse, allowing us to evaluate stability and precision of 2D hand movement. From this tracing, the test collected and stored insights concerning lower arm motor movement.

RESULTS

Our formative study included 31 participants, 18 without PD and 13 with PD, and analyzed their lower limb movement data collected from keyboards and computer mice. From the data set, we extracted 28 features and evaluated their significances using an extra tree classifier predictor. A random forest model was trained using the 6 most important features identified by the predictor. These selected features provided insights into precision and movement speed derived from keyboard tapping and mouse tracing tests. This final model achieved an average F-score of 0.7311 (SD 0.1663) and an average accuracy of 0.7429 (SD 0.1400) over 20 runs for predicting the presence of PD.

CONCLUSIONS

This preliminary feasibility study suggests the possibility of using technology-based limb movement data to predict the presence of PD, demonstrating the practicality of implementing this approach in a cost-effective and accessible manner. In addition, this study demonstrates that structured mouse movement tests can be used in combination with finger tapping to detect PD.

摘要

背景

帕金森病(PD)在全球影响着数百万人,导致运动功能受损。早期检测至关重要,多种数据源有助于诊断。我们关注在键盘、触控板或触摸屏交互过程中的手臂下部运动,这些运动可作为帕金森病的可靠指标。先前的研究探讨了键盘敲击和非结构化设备监测;我们试图通过结构化测试进一步推进这些研究,除了手指敲击外,还考虑二维手部运动。我们的可行性研究使用来自远程进行的、结构化的、基于网络的测试中的按键和鼠标移动数据,结合自我报告的帕金森病状态,创建一个用于检测帕金森病存在的预测模型。

目的

通过键盘输入分析手指敲击速度和准确性,以及通过鼠标输入分析二维手部运动,从而区分帕金森病患者和非帕金森病患者。这种比较分析使我们能够明确区分两组,并探索利用运动行为预测疾病存在的可行性。

方法

夏威夷帕金森协会(HPA)通过电子邮件招募参与者,并引导他们使用一个网络应用程序进行测试。2023年HPA研讨会也被用作招募参与者和传播我们研究信息的平台。该应用程序记录了参与者的人口统计学信息,包括年龄、性别和种族,以及帕金森病状态。我们进行了一系列测试来评估手指敲击,使用屏幕提示要求按下固定键和随机键。记录响应时间、准确性以及导致意外按键的意外动作。参与者进行了一项手部运动测试,包括使用触控板或鼠标在屏幕上追踪直线和曲线带状物,使我们能够评估二维手部运动的稳定性和精确性。通过这种追踪,测试收集并存储了有关手臂下部运动的见解。

结果

我们的形成性研究包括31名参与者,18名非帕金森病患者和13名帕金森病患者,并分析了他们从键盘和电脑鼠标收集的下肢运动数据。从数据集中,我们提取了28个特征,并使用一个额外树分类器预测器评估它们的重要性。使用预测器识别出的6个最重要特征训练了一个随机森林模型。这些选定的特征提供了从键盘敲击和鼠标追踪测试中得出的精确性和运动速度的见解。这个最终模型在预测帕金森病存在的20次运行中,平均F值为0.7311(标准差0.1663),平均准确率为0.7429(标准差0.1400)。

结论

这项初步可行性研究表明,利用基于技术的肢体运动数据预测帕金森病存在的可能性,证明了以经济高效且易于获取的方式实施这种方法的实用性。此外,这项研究表明,结构化鼠标运动测试可与手指敲击结合使用以检测帕金森病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a8a/10576230/7389744fd2c7/formative_v7i1e49898_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验