Suppr超能文献

利用基于人体单运动神经元记录的动态肌肉模型模拟运动神经元疾病中的进行性运动神经元变性和侧支再支配。

Simulating progressive motor neuron degeneration and collateral reinnervation in motor neuron diseases using a dynamic muscle model based on human single motor unit recordings.

机构信息

Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.

Department of Neurology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.

出版信息

J Neural Eng. 2023 Oct 31;20(5). doi: 10.1088/1741-2552/acfe9d.

Abstract

To simulate progressive motor neuron loss and collateral reinnervation in motor neuron diseases (MNDs) by developing a dynamic muscle model based on human single motor unit (MU) surface-electromyography (EMG) recordings.Single MU potentials recorded with high-density surface-EMG from thenar muscles formed the basic building blocks of the model. From the baseline MU pool innervating a muscle, progressive MU loss was simulated by removal of MUs, one-by-one. These removed MUs underwent collateral reinnervation with scenarios varying from 0% to 100%. These scenarios were based on a geometric variable, reflecting the overlap in MU territories using the spatiotemporal profiles of single MUs and a variable reflecting the efficacy of the reinnervation process. For validation, we tailored the model to generate compound muscle action potential (CMAP) scans, which is a promising surface-EMG method for monitoring MND patients. Selected scenarios for reinnervation that matched observed MU enlargements were used to validate the model by comparing markers (including the maximum CMAP and a motor unit number estimate (MUNE)) derived from simulated and recorded CMAP scans in a cohort of 49 MND patients and 22 age-matched healthy controls.The maximum CMAP at baseline was 8.3 mV (5th-95th percentile: 4.6 mV-11.8 mV). Phase cancellation caused an amplitude drop of 38.9% (5th-95th percentile, 33.0%-45.7%). To match observations, the geometric variable had to be set at 40% and the efficacy variable at 60%-70%. The Δ maximum CMAP between recorded and simulated CMAP scans as a function of fitted MUNE was -0.4 mV (5th-95th percentile = -4.0 - +2.4 mV).The dynamic muscle model could be used as a platform to train personnel in applying surface-EMG methods prior to their use in clinical care and trials. Moreover, the model may pave the way to compare biomarkers more efficiently, without directly posing unnecessary burden on patients.

摘要

为了模拟运动神经元疾病(MND)中的进行性运动神经元丢失和侧支再支配,我们开发了一种基于人体单运动单位(MU)表面肌电图(EMG)记录的动态肌肉模型。使用高密度表面 EMG 从鱼际肌记录的单个 MU 电位构成了模型的基本构建块。从支配一块肌肉的基线 MU 池中,通过逐个移除 MU 来模拟进行性 MU 丢失。这些被移除的 MU 经历了从 0%到 100%的侧支再支配。这些场景基于一个几何变量,该变量使用单个 MU 的时空分布来反映 MU 区域的重叠,并使用一个反映再支配过程效率的变量。为了验证,我们调整了模型以生成复合肌肉动作电位(CMAP)扫描,这是一种很有前途的用于监测 MND 患者的表面 EMG 方法。选择与观察到的 MU 增大相匹配的再支配场景来验证模型,方法是比较从 49 名 MND 患者和 22 名年龄匹配的健康对照者的记录和模拟 CMAP 扫描中得出的标记物(包括最大 CMAP 和运动单位数量估计(MUNE))。基线时最大 CMAP 为 8.3 mV(5 至 95 百分位数:4.6 mV-11.8 mV)。相位抵消导致幅度下降 38.9%(5 至 95 百分位数,33.0%-45.7%)。为了匹配观察结果,必须将几何变量设置为 40%,并且将效率变量设置为 60%-70%。记录的和模拟的 CMAP 扫描之间的 Δ最大 CMAP 作为拟合 MUNE 的函数为-0.4 mV(5 至 95 百分位数= -4.0-+2.4 mV)。动态肌肉模型可用作培训人员在将表面 EMG 方法应用于临床护理和试验之前的平台。此外,该模型可能为更有效地比较生物标志物铺平道路,而不会直接给患者带来不必要的负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验