Solly Emily F, Jaeger Astrid C H, Barthel Matti, Werner Roland A, Zürcher Alois, Hagedorn Frank, Six Johan, Hartmann Martin
Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland.
Department of Environmental Systems Science, Grassland Sciences Group, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
Plant Soil. 2023;490(1-2):499-519. doi: 10.1007/s11104-023-06093-5. Epub 2023 Jun 17.
Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved.
Using mesocosms, we assessed how increasing levels of water deficit affect the growth of saplings and performed a C-CO pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO and phospholipid fatty acids of soil microbial groups.
With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of C label and the transit time of C from needles to the soil pore CO. Comparatively, more severe water limitation increased the fraction of C label that trees allocated to fine roots and soil fungi while a lower fraction of CO was readily respired from the soil.
When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used.
The online version contains supplementary material available at 10.1007/s11104-023-06093-5.
全球范围内的树种都面临着长期的水分限制。这些状况不仅影响树木的生长和活力,还会反馈到植物 - 土壤界面的碳(C)循环。然而,土壤水分持续流失对地下同化碳转移的影响仍未得到解决。
我们利用中型生态系统评估了水分亏缺程度增加如何影响幼树的生长,并进行了碳 - 一氧化碳脉冲标记实验,以追踪同化碳进入针叶、细根、土壤孔隙一氧化碳以及土壤微生物群落磷脂脂肪酸的途径。
随着水分限制的增加,树木将更多生物量分配到地下,代价是地上生长。适度的水分限制几乎不影响碳标记的吸收以及碳从针叶到土壤孔隙一氧化碳的转运时间。相比之下,更严重的水分限制增加了树木分配到细根和土壤真菌的碳标记比例,而从土壤中容易呼吸出的一氧化碳比例较低。
当土壤水分大量无法获取时,树木内部的碳循环会变慢,一部分分配到地下的碳可能会在细根中积累,或者转移到土壤及相关微生物中而未被代谢利用。
在线版本包含可在10.1007/s11104 - 023 - 06093 - 5获取的补充材料。