Draper Scholar, The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA.
Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
Adv Biol (Weinh). 2024 Jan;8(1):e2300127. doi: 10.1002/adbi.202300127. Epub 2023 Oct 2.
Kidney ischemia reperfusion injury (IRI) poses a major global healthcare burden, but effective treatments remain elusive. IRI involves a complex interplay of tissue-level structural and functional changes caused by interruptions in blood and filtrate flow and reduced oxygenation. Existing in vitro models poorly replicate the in vivo injury environment and lack means of monitoring tissue function during the injury process. Here, a high-throughput human primary kidney proximal tubule (PT)-microvascular model is described, which facilitates in-depth structural and rapid functional characterization of IRI-induced changes in the tissue barrier. The PREDICT96 (P96) microfluidic platform's user-controlled fluid flow can mimic the conditions of IR to induce pronounced changes in cell structure that resemble clinical and in vivo phenotypes. High-throughput trans-epi/endo-thelial electrical resistance (TEER) sensing is applied to non-invasively track functional changes in the PT-microvascular barrier during the two-stage injury process and over repeated episodes of injury. Notably, ischemia causes an initial increase in tissue TEER followed by a sudden increase in permeability upon reperfusion, and this biphasic response occurs only with the loss of both fluid flow and oxygenation. This study demonstrates the potential of the P96 kidney IRI model to enhance understanding of IRI and fuel therapeutic development.
肾缺血再灌注损伤 (IRI) 对全球医疗保健构成重大负担,但仍缺乏有效的治疗方法。IRI 涉及由于血液和滤液流动中断以及氧合减少而导致的组织水平结构和功能变化的复杂相互作用。现有的体外模型难以复制体内损伤环境,并且缺乏在损伤过程中监测组织功能的手段。在这里,描述了一种高通量的人原代肾近端小管 (PT)-微血管模型,该模型有助于深入研究组织屏障中 IRI 诱导的结构变化,并进行快速功能表征。PREDICT96 (P96) 微流控平台的用户控制的流体流动可以模拟 IR 的条件,以诱导类似于临床和体内表型的细胞结构明显变化。高通量跨上皮/内皮电阻 (TEER) 感应可无创性跟踪 PT-微血管屏障在两阶段损伤过程中的功能变化,并在反复损伤中进行跟踪。值得注意的是,缺血会导致组织 TEER 最初增加,随后再灌注时通透性突然增加,并且这种双相反应仅在失去流体流动和氧合时才会发生。这项研究表明,P96 肾脏 IRI 模型具有增强对 IRI 的理解和推动治疗开发的潜力。