Suppr超能文献

抑制SAMSN1有助于对患有缺氧缺血性脑病损伤的新生大鼠进行神经保护。

Suppression of SAMSN1 contributes to neuroprotection in neonatal rats suffering from hypoxic-ischemic encephalopathy injury.

作者信息

Wang Yi-Bo, Gan Zong-Jin, Zhang Jun-Yan, Wanchana Somjit, Guo Xi-Liang

机构信息

School of Basic Medical Sciences Jinzhou Medical University Jinzhou Liaoning Province China.

Class of 2019, Department of Anesthesiology Southwest Medical University Luzhou Sichuan Province China.

出版信息

Ibrain. 2022 Nov 12;9(1):3-12. doi: 10.1002/ibra.12078. eCollection 2023 Spring.

Abstract

This article aims to detect the effect of SAM domain, SH3 domain, and nuclear localization signal 1 (SAMSN1) in neonatal rats with neurological dysfunction induced by hypoxia and ischemia (HI). The HI model was created using 7-day postnatal rats. Zea-longa score was utilized to validate the neurological injury after HI. Then, the differentially expressed genes (DEGs) were detected by gene sequencing and bioinformatics analysis methods. The oxygen and glucose deprivation (OGD) models were established in the SY5Y cells and fetal human cortical neurons. In addition, SAMSN1-small interfering RNA, methyl thiazolyl tetrazolium assay, and cell growth curve were employed to evaluate the cell viability variation. Obviously, Zea-longa scores increased in rats with HI insult. Subsequently, SAMSN1 was screened out, and it was found that SAMSN1 was strikingly upregulated in SY5Y cells and fetal neurons post-OGD. Interestingly, we found that SAMSN1 silencing could markedly enhance cell viability and cell growth after OGD. These data suggested that downregulation of SAMSN1 may exert a neuroprotective effect on damaged neurons after HI by improving cell viability and cell survival, which provides a potential theoretical basis for clinical trials in the future to treat neonatal hypoxic-ischemic encephalopathy.

摘要

本文旨在检测SAM结构域、SH3结构域和核定位信号1(SAMSN1)在缺氧缺血(HI)诱导的新生大鼠神经功能障碍中的作用。采用出生后7天的大鼠建立HI模型。利用Zea-longa评分法验证HI后的神经损伤。然后,通过基因测序和生物信息学分析方法检测差异表达基因(DEG)。在SY5Y细胞和胎儿人皮质神经元中建立氧糖剥夺(OGD)模型。此外,采用SAMSN1小干扰RNA、甲基噻唑基四氮唑法和细胞生长曲线来评估细胞活力变化。显然,HI损伤大鼠的Zea-longa评分增加。随后,筛选出SAMSN1,发现OGD后SY5Y细胞和胎儿神经元中SAMSN1显著上调。有趣的是,我们发现SAMSN1沉默可显著提高OGD后的细胞活力和细胞生长。这些数据表明,SAMSN1的下调可能通过提高细胞活力和细胞存活率对HI后受损神经元发挥神经保护作用,这为未来治疗新生儿缺氧缺血性脑病的临床试验提供了潜在的理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a6/10528993/9a8ceaad58ca/IBRA-9-3-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验