Wang Si, Wu Yingjie, Pu Mingbo, Xu Mingfeng, Zhang Renyan, Yu Tao, Li Xiong, Ma Xiaoliang, Su Yuanjie, Tai Huiling, Guo Yongcai, Luo Xiangang
State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
Key Laboratory of Opto-Electronic Technology and Systems of the Education Ministry, College of Opto-electronic Engineering, Chongqing University, Chongqing, 400044, China.
Small. 2024 Feb;20(6):e2305706. doi: 10.1002/smll.202305706. Epub 2023 Oct 3.
Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.
开发能够同时实现节能和能源产生的多功能系统对于加速碳中和至关重要。然而,设计高效、大规模和多功能光子薄膜面临的挑战阻碍了被动日间辐射冷却(PDRC)与可持续清洁能源利用的同时结合。在此,通过将六方氮化硼(h-BN)纳米片的优异散射效率与Ecoflex基体的高红外发射率和理想的摩擦电负性相结合,开发了一种具有可清洗性能和优异机械稳定性的多功能可扩展光子薄膜(Ecoflex@h-BN)。引人注目的是,足够高的太阳反射率(0.92)和理想的发射率(0.97)使Ecoflex@h-BN薄膜在连续户外测量期间的中午具有约9.5°C的亚环境冷却效果。此外,基于PDRC Ecoflex@h-BN薄膜的摩擦纳米发电机(PDRC-TENG)表现出0.5 W m的最大峰值功率密度。通过合理的结构设计,PDRC-TENG实现了有效的风能收集,并能够成功驱动电子设备。同时,制备了一种可穿戴的PDRC-TENG来收集人体运动能量并监测运动状态。本研究提供了一种多功能PDRC光子薄膜的新颖设计,并提供了一种实现PDRC和可持续能源收集同时进行的通用策略。