Carrillo Jan-Michael, Wang Yangyang, Kumar Rajeev, Sumpter Bobby G
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Eur Phys J E Soft Matter. 2023 Oct 5;46(10):92. doi: 10.1140/epje/s10189-023-00342-2.
We present results from explicit-solvent coarse-grained molecular dynamics (MD) simulations of fully charged, salt-free, and unentangled polyelectrolytes in semidilute solutions. The inclusion of a polar solvent in the model allows for a more physical representation of these solutions at concentrations, where the assumptions of a continuum dielectric medium and screened hydrodynamics break down. The collective dynamic structure factor of polyelectrolytes, S(q, t), showed that at [Formula: see text], where [Formula: see text] is the polyelectrolyte peak in the structure factor S(q) and [Formula: see text] is the correlation length, the relaxation time obtained from fits to stretched exponential was [Formula: see text], which describes unscreened Zimm-like dynamics. This is in contrast to implicit-solvent simulations using a Langevin thermostat where [Formula: see text]. At [Formula: see text], a crossover region was observed that eventually transitions to another inflection point [Formula: see text] at length scales larger than [Formula: see text] for both implicit- and explicit-solvent simulations. The simulation results were also compared to scaling predictions for correlation length, [Formula: see text], specific viscosity, [Formula: see text], and diffusion coefficient, [Formula: see text], where [Formula: see text] is the polyelectrolyte concentration. The scaling prediction for [Formula: see text] holds; however, deviations from the predictions for [Formula: see text] and D were observed for systems at higher [Formula: see text], which are in qualitative agreements with recent experimental results. This study highlights the importance of explicit-solvent effects in molecular dynamics simulations, particularly in semidilute solutions, for a better understanding of polyelectrolyte solution behavior.
我们展示了在半稀溶液中对完全带电、无盐且无缠结的聚电解质进行显式溶剂粗粒化分子动力学(MD)模拟的结果。模型中包含极性溶剂,使得在连续介质电介质和屏蔽流体动力学假设失效的浓度下,能够更真实地表示这些溶液。聚电解质的集体动态结构因子(S(q, t))表明,在([公式:见正文])处,其中([公式:见正文])是结构因子(S(q))中的聚电解质峰,([公式:见正文])是相关长度,从拉伸指数拟合得到的弛豫时间为([公式:见正文]),这描述了未屏蔽的齐姆类动力学。这与使用朗之万恒温器的隐式溶剂模拟形成对比,在隐式溶剂模拟中([公式:见正文])。在([公式:见正文])处,观察到一个交叉区域,对于隐式和显式溶剂模拟,该区域最终在大于([公式:见正文])的长度尺度上转变为另一个拐点([公式:见正文])。模拟结果还与相关长度([公式:见正文])、比粘度([公式:见正文])和扩散系数([公式:见正文])的标度预测进行了比较,其中([公式:见正文])是聚电解质浓度。([公式:见正文])的标度预测成立;然而,对于较高([公式:见正文])的系统,观察到与([公式:见正文])和(D)的预测存在偏差,这与最近的实验结果在定性上一致。这项研究强调了显式溶剂效应在分子动力学模拟中的重要性,特别是在半稀溶液中,以便更好地理解聚电解质溶液的行为。