Feng Yanchao
College of Management and Economics, Tianjin University, Tianjin, China.
PLoS One. 2023 Oct 5;18(10):e0263783. doi: 10.1371/journal.pone.0263783. eCollection 2023.
China's economy has progressed from a rapid growth phase to one of high-quality development and innovation. Industry 4.0 manufacturing technology and processes include cyber-physical systems (CPS), Industrial Internet of Things (IIOT), Cognitive Computing and Artificial Intelligence (CCAI) as advancements in computerization and information exchange the relevant variables data, and a survey questionnaire are used to accumulate three-year data from 2017 to 2019. The Structured Equation Modeling (SEM), analytic hierarchy process (AHP), and mediating variable in a SOBEL test are applied. The results show that Industry 4.0 is the primary practical corridor to official and familiar in sequence substitute policy and collaboration for talent agglomeration on research projects. It lowers the fixed price of human capital and significant factors active long-term innovation and profit at the end of the inferential test results. Hypotheses findings show that the associations between dependent and independent variables are essential, and latent variables GFI, CFI, TLI, and IFI have acceptable values. CMINDF and RMR fulfill the fit criteria and results will assist managers and policymakers in spotting talent agglomeration activities implemented to increase manufacturing businesses' readiness to reap the most benefits from Industry 4.0 adoption.
中国经济已从快速增长阶段迈向高质量发展与创新阶段。工业4.0制造技术与流程包括网络物理系统(CPS)、工业物联网(IIOT)、认知计算与人工智能(CCAI),作为计算机化和信息交换方面的进步,相关变量数据以及一份调查问卷被用于收集2017年至2019年的三年数据。应用了结构方程模型(SEM)、层次分析法(AHP)以及SOBEL检验中的中介变量。结果表明,工业4.0是官方和熟悉的顺序替代政策以及研究项目人才集聚合作的主要实践通道。在推断性检验结果的最后,它降低了人力资本的固定成本以及积极推动长期创新和利润的重要因素。假设结果表明,因变量和自变量之间的关联至关重要,潜在变量GFI、CFI、TLI和IFI具有可接受的值。CMINDF和RMR符合拟合标准,研究结果将帮助管理者和政策制定者识别为提高制造企业从采用工业4.0中获取最大利益的准备程度而开展的人才集聚活动。