Suppr超能文献

医院自主移动机器人的随机调度。

Stochastic scheduling of autonomous mobile robots at hospitals.

机构信息

Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, China.

Business Analytics Research Center, Chang Gung University, Taoyuan City, Taiwan.

出版信息

PLoS One. 2023 Oct 5;18(10):e0292002. doi: 10.1371/journal.pone.0292002. eCollection 2023.

Abstract

This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.

摘要

本文研究了医院中自主移动机器人(AMR)的调度问题,其中 AMR 的随机行驶时间和服务时间受到周围环境的影响。规划 AMR 的路线以最小化医院的日成本(包括 AMR 的固定成本、违反时间窗口的罚款成本和运输成本)。为了高效地生成高质量的解决方案,一些性质被确定并纳入到改进的禁忌搜索(I-TS)算法中以解决问题。实验评估表明,I-TS 算法通过生成高质量的解决方案优于现有方法。基于医疗需求和 AMR 工作环境的特点,合理调度 AMR 可以有效地提供医疗服务,提高医疗资源的利用率,并降低医院成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1739/10553209/3e468440d046/pone.0292002.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验