Suppr超能文献

流体GPT(基于生成式预训练变换器快速学习理解和研究动力学):粒子轨迹和侵蚀的高效预测

FLUID-GPT (Fast Learning to Understand and Investigate Dynamics with a Generative Pre-Trained Transformer): Efficient Predictions of Particle Trajectories and Erosion.

作者信息

Yang Steve D, Ali Zulfikhar A, Wong Bryan M

机构信息

Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521, United States.

Department of Chemistry and Department of Physics & Astronomy, University of California-Riverside, Riverside, California 92521, United States.

出版信息

Ind Eng Chem Res. 2023 Sep 8;62(37):15278-15289. doi: 10.1021/acs.iecr.3c01639. eCollection 2023 Sep 20.

Abstract

The deleterious impact of erosion due to high-velocity particle impingement adversely affects a variety of engineering and industrial systems, resulting in irreversible mechanical wear of materials/components. Brute force computational fluid dynamics (CFD) calculations are commonly used to predict surface erosion by directly solving the Navier-Stokes equations for fluid and particle dynamics; however, these numerical approaches often require significant computational resources. In contrast, recent data-driven approaches using machine learning (ML) have shown immense promise for more efficient and accurate predictions to sidestep computationally demanding CFD calculations. To this end, we have developed FLUID-GPT (Fast Learning to Understand and Investigate Dynamics with a Generative Pre-Trained Transformer), a new hybrid ML architecture for accurately predicting particle trajectories and erosion on an industrial-scale steam header geometry. Our FLUID-GPT approach utilizes a Generative Pre-Trained Transformer 2 (GPT-2) with a convolutional neural network (CNN) for the first time to predict surface erosion using only information from five initial conditions: particle size, main-inlet speed, main-inlet pressure, subinlet speed, and subinlet pressure. Compared to the bidirectional long- and short-term memory (BiLSTM) ML techniques used in previous work, our FLUID-GPT model is much more accurate (a 54% decrease in the mean squared error) and efficient (70% less training time). Our work demonstrates that FLUID-GPT is an accurate and efficient ML approach for predicting time-series trajectories and their subsequent spatial erosion patterns in these complex dynamic systems.

摘要

高速粒子撞击造成的侵蚀所带来的有害影响,会对各种工程和工业系统产生不利影响,导致材料/部件出现不可逆的机械磨损。强力计算流体动力学(CFD)计算通常用于通过直接求解流体和粒子动力学的纳维-斯托克斯方程来预测表面侵蚀;然而,这些数值方法通常需要大量的计算资源。相比之下,最近使用机器学习(ML)的数据驱动方法已显示出巨大的前景,有望更高效、准确地进行预测,从而避开计算量大的CFD计算。为此,我们开发了FLUID-GPT(使用生成式预训练变换器快速学习理解和研究动力学),这是一种新的混合ML架构,用于在工业规模的蒸汽集管几何形状上准确预测粒子轨迹和侵蚀情况。我们的FLUID-GPT方法首次利用带有卷积神经网络(CNN)的生成式预训练变换器2(GPT-2),仅使用来自五个初始条件的信息来预测表面侵蚀:粒径、主入口速度、主入口压力、子入口速度和子入口压力。与先前工作中使用的双向长短期记忆(BiLSTM)ML技术相比,我们的FLUID-GPT模型更加准确(均方误差降低了54%)且效率更高(训练时间减少了70%)。我们的工作表明,FLUID-GPT是一种准确且高效的ML方法,可用于预测这些复杂动态系统中的时间序列轨迹及其随后的空间侵蚀模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a27b/10548597/89bb30247f8c/ie3c01639_0001.jpg

相似文献

2
Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
Comput Biol Chem. 2023 Oct;106:107911. doi: 10.1016/j.compbiolchem.2023.107911. Epub 2023 Jun 29.
3
RM-GPT: Enhance the comprehensive generative ability of molecular GPT model via LocalRNN and RealFormer.
Artif Intell Med. 2024 Apr;150:102827. doi: 10.1016/j.artmed.2024.102827. Epub 2024 Feb 27.
4
5
6
GPT-Assisted Learning of Structure-Property Relationships by Graph Neural Networks: Application to Rare-Earth-Doped Phosphors.
J Phys Chem Lett. 2023 Dec 21;14(50):11342-11349. doi: 10.1021/acs.jpclett.3c02848. Epub 2023 Dec 8.
7
HELM-GPT: de novo macrocyclic peptide design using generative pre-trained transformer.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae364.
9
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
10
Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
Ann Biomed Eng. 2005 Mar;33(3):284-300. doi: 10.1007/s10439-005-1731-0.

引用本文的文献

1
Effectiveness of three machine learning models for prediction of daily streamflow and uncertainty assessment.
Water Res X. 2024 Dec 28;27:100297. doi: 10.1016/j.wroa.2024.100297. eCollection 2025 May 1.
2
Mass spectra prediction with structural motif-based graph neural networks.
Sci Rep. 2024 Jan 16;14(1):1400. doi: 10.1038/s41598-024-51760-x.

本文引用的文献

1
Transformers for modeling physical systems.
Neural Netw. 2022 Feb;146:272-289. doi: 10.1016/j.neunet.2021.11.022. Epub 2021 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验