Automatic Control, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
Unidad de Investigación Médica en Enfermedades Metabólicas, Instituto Mexicano del Seguro Social, Cuauhtémoc 330 Col. Doctores, CDMX, Mexico City, Mexico.
J Biol Phys. 2023 Dec;49(4):509-520. doi: 10.1007/s10867-023-09643-1. Epub 2023 Oct 6.
Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey. To simulate the prey-predator relationship we used a Lotka-Volterra model to analyze the effects of varying prey availability on the size of the predator population. We calculate the number of prey necessary to support the predator population using a high-order sliding mode control (HOSMC) that maintains the predator population at the desired level. In the wild, nature introduces significant and complex uncertainties that affect species' survival. This complexity suggests that HOSMC is a good choice of controller because it is robust to variability and does not require prior knowledge of system parameters. These parameters can also be time varying. The output measurement required by the HOSMC is the number of predators. It can be obtained using continuous monitoring of environmental DNA that measures the number of lynxes and prey in a specific geographic area. The controller efficiency in the presence of these parametric uncertainties was demonstrated with a numerical simulation, where random perturbations were forced in all four model parameters at each simulation step, and the controller provides the specific prey input that will maintain the predator population. The simulation demonstrates how HOSMC can increase and maintain an endangered population (lynx) in just 21-26 months by regulating the food supply (hares), with an acceptable maximal steady-state error of 3%.
人为灭绝和快速的生态变化要求开发能够帮助避免濒危物种灭绝的技术。避免灭绝最常用的策略是重新引入濒危物种,但这些尝试中只有 31%是成功的,并且需要长达 15 年的时间来评估其结果。在这项研究中,我们提出了一种新策略,通过控制猎物的可获得性来提高濒危捕食者(如猞猁)的生存机会。为了模拟猎物-捕食者关系,我们使用了一个 Lotka-Volterra 模型来分析猎物可获得性变化对捕食者种群大小的影响。我们使用高阶滑模控制(HOSMC)来计算维持捕食者种群所需的猎物数量,该控制可将捕食者种群维持在所需水平。在野外,自然界会引入影响物种生存的重大且复杂的不确定性。这种复杂性表明,HOSMC 是控制器的一个不错选择,因为它对可变性具有鲁棒性,并且不需要系统参数的先验知识。这些参数也可能随时间变化。HOSMC 所需的输出测量是捕食者的数量。可以通过连续监测环境 DNA 来获得,该监测可测量特定地理区域中猞猁和猎物的数量。在存在这些参数不确定性的情况下,通过数值模拟证明了控制器的效率,其中在每个模拟步骤中都会在所有四个模型参数中强制施加随机扰动,并且控制器提供将维持捕食者种群的特定猎物输入。该模拟演示了 HOSMC 如何通过调节食物供应(野兔)仅在 21-26 个月内增加和维持濒危种群(猞猁),最大稳态误差可接受为 3%。