Suppr超能文献

合成薄膜氧化亚铜中的高激发里德堡激子。

Highly-excited Rydberg excitons in synthetic thin-film cuprous oxide.

作者信息

DeLange Jacob, Barua Kinjol, Paul Anindya Sundar, Ohadi Hamid, Zwiller Val, Steinhauer Stephan, Alaeian Hadiseh

机构信息

Department of Physics, Purdue University, West Lafayette, IN, 47907, USA.

Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sci Rep. 2023 Oct 6;13(1):16881. doi: 10.1038/s41598-023-41465-y.

Abstract

Cuprous oxide ([Formula: see text]) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to [Formula: see text]) enables strong long-range dipole-dipole (proportional to [Formula: see text]) and van der Waals interactions (proportional to [Formula: see text]). Currently, the highest-lying Rydberg states are found in naturally occurring [Formula: see text]. However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film [Formula: see text] samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a [Formula: see text] thin film on a transparent substrate that showcases Rydberg excitons up to [Formula: see text] which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.

摘要

氧化亚铜([化学式:见原文])最近在固态量子技术中成为一种有前景的材料,特别是因其具有以大主量子数(n)为特征的激子里德堡态。这些高激发态显著的波函数尺寸(与[化学式:见原文]成正比)使得强的长程偶极 - 偶极相互作用(与[化学式:见原文]成正比)和范德华相互作用(与[化学式:见原文]成正比)成为可能。目前,最高的里德堡态存在于天然的[化学式:见原文]中。然而,对于技术应用而言,生长高质量的合成样品的能力至关重要。薄膜[化学式:见原文]样品的制备尤其令人关注,因为它们通过里德堡阻塞观察极端单光子非线性具有潜力。尽管如此,由于高激发态对带电杂质敏感,生长足够质量的合成样品构成了重大挑战。本研究成功展示了在透明衬底上与互补金属氧化物半导体(CMOS)兼容的[化学式:见原文]薄膜的合成,该薄膜展示了高达[化学式:见原文]的里德堡激子,这很容易适用于光子器件制造。这些发现标志着在实现可扩展且可片上集成的里德堡量子技术方面取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ae/10558487/57af03a433d8/41598_2023_41465_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验