Cellular Neurobiology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany.
Department of Sports Medicine, Rehabilitation and Disease Prevention, Institute of Sports Sciences, Johannes Gutenberg University of Mainz, Mainz, Germany.
Cell Commun Signal. 2023 Oct 6;21(1):276. doi: 10.1186/s12964-023-01308-9.
Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids.
EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data.
Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36EVs in glioblastoma and GALCEVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107aEVs with neurofilament levels in blood of MS patients and HC.
The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.
源自中枢神经系统 (CNS) 的细胞外囊泡 (EVs) 可以进入血流并携带疾病状态特征的分子。因此,循环中枢神经系统来源的 EV 有可能成为神经退行性疾病和脑肿瘤的早期诊断和随访的液体活检标志物。使用多参数分析监测和分析中枢神经系统来源的 EV 将是生物标志物和基础研究的重大进展。在这里,我们探索了一种多重基于珠子的流式细胞术测定法 (EVNeuro) 用于半定量检测体液中中枢神经系统来源的 EV 的性能。
EV 从神经胶质瘤细胞系 (LN18、LN229、NCH82) 和原代人星形胶质细胞的培养物中分离出来,并在 MACSPlex EV 试剂盒 Neuro,human 中以不同的输入量进行测量。此外,还从小队列的神经胶质瘤 (GB)、多发性硬化症 (MS) 和阿尔茨海默病患者以及健康对照者 (HC) 的血液样本中分离出 EV,并进行 EVNeuro 测定。为了确定相对标记物信号强度之间存在统计学显著差异,计算了未配对样本 t 检验或 Wilcoxon 秩和检验。对数据进行 tSNE、热图聚类和相关性分析,以进一步探索疾病状态和 EVNeuro 数据之间的关系。
神经胶质瘤细胞系和原代人星形胶质细胞显示出不同的 EV 特征。信号强度随 EV 输入的增加而增加。数据归一化提高了识别偏离共同特征的标记物的能力。总体而言,患者血液来源的 EV 标志物谱是恒定的,但与健康对照者相比,疾病状态下的个别 EV 群体显著增加,例如神经胶质瘤中的 CD36EVs 和多发性硬化症中的 GALCEVs。tSNE 和热图聚类分析将 GB 患者与 HC 患者区分开来,但 MS 患者与 HC 患者则不能。相关性分析显示,MS 患者和 HC 患者血液中的 CD107aEVs 与神经丝水平可能存在关联。
半定量 EVNeuro 测定法证明了其在复杂样本中进行 EV 分析的实用性。然而,在生物标志物研究中,可靠的统计结果需要大样本队列和高效应量。尽管如此,这项探索性试验证实了使用 EVNeuro 测定法发现与 EV 相关的生物标志物并监测中枢神经系统疾病中循环 EV 谱的可行性。视频摘要。