Suppr超能文献

高阶声子非谐性诱导的氢化类石墨烯硼烯中晶格热导率应变工程的复杂作用

Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity.

作者信息

He Jia, Yu Cuiqian, Lu Shuang, Shan Shuyue, Zhang Zhongwei, Chen Jie

机构信息

Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.

出版信息

Nanotechnology. 2023 Oct 24;35(2). doi: 10.1088/1361-6528/ad0127.

Abstract

Strain engineering has been used as a versatile tool for regulating the thermal transport in various materials as a result of the phonon frequency shift. On the other hand, the phononic bandgap can be simultaneously tuned by the strain, which can play a critical role in wide phononic bandgap materials due to the high-order phonon anharmonicity. In this work, we investigate the complex role of uniaxial tensile strain on the lattice thermal conductivity of hydrogenated graphene-like borophene, by using molecular dynamics simulations with a machine learning potential. Our findings highlight a novel and intriguing phenomenon that the thermal conductivity in the armchair direction is non-monotonically dependent on the uniaxial armchair strain. Specifically, we uncover that the increase of phonon group velocity and the decrease of three-phonon scattering compete with the enhancement of four-phonon scattering under armchair strain, leading to the non-monotonic dependence. The enhanced four-phonon scattering originates from the unique bridged B-H bond that can sensitively control the phononic bandgap under armchair strain. This anomalous non-monotonic strain-dependence highlights the complex interplay between different mechanisms governing thermal transport in 2D materials with large phononic bandgaps. Our study offers valuable insights for designing innovative thermal management strategies based on strain.

摘要

由于声子频率的移动,应变工程已被用作一种通用工具来调节各种材料中的热传输。另一方面,声子带隙可通过应变同时进行调节,由于高阶声子非谐性,这在宽声子带隙材料中可发挥关键作用。在这项工作中,我们通过使用具有机器学习势的分子动力学模拟,研究了单轴拉伸应变对氢化类石墨烯硼烯晶格热导率的复杂作用。我们的研究结果突出了一个新颖且有趣的现象,即扶手椅方向的热导率非单调地依赖于单轴扶手椅应变。具体而言,我们发现声子群速度的增加和三声子散射的减少与扶手椅应变下四声子散射的增强相互竞争,导致了这种非单调依赖性。增强的四声子散射源于独特的桥连B - H键,它能在扶手椅应变下灵敏地控制声子带隙。这种异常的非单调应变依赖性突出了在具有大声子带隙的二维材料中,不同热传输机制之间的复杂相互作用。我们的研究为基于应变设计创新的热管理策略提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验