Chen Xinchen, Perry Sarah, Wang Bei, Wang Shuran, Hu Jiayi, Loxterkamp Elizabeth, Dickman Dion, Han Chun
Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
bioRxiv. 2023 Sep 25:2023.09.25.559303. doi: 10.1101/2023.09.25.559303.
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions in animal development. However, this approach has been successfully applied in only a small number of tissues. The motor nervous system is an excellent model system for studying the biology of neuromuscular junction (NMJ). To expand tissue-specific CRISPR to the motor system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of this toolkit by knocking out known genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. Using these tools, we discovered an essential role for SNARE pathways in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating the retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to lease extracellular vesicles at the NMJ.
通过CRISPR/Cas9进行组织特异性基因敲除是一种用于在动物发育过程中表征基因功能的强大方法。然而,这种方法仅在少数组织中成功应用。运动神经系统是研究神经肌肉接头(NMJ)生物学的优秀模型系统。为了将组织特异性CRISPR扩展到运动系统,我们在此展示了一种CRISPR介导的组织限制性诱变(CRISPR-TRiM)工具包,用于在运动神经元、肌肉和神经胶质细胞中敲除基因。我们通过在每个组织中敲除已知基因验证了该工具包的有效性,证明了其与Gal4/UAS二元表达系统的正交使用,并展示了多个冗余基因的同时敲除。使用这些工具,我们发现了SNARE途径在NMJ维持中的重要作用。此外,我们证明经典的ESCRT途径通过下调逆行Gbb信号来抑制NMJ终扣生长。最后,我们发现运动神经元的轴突末端依赖于ESCRT介导的轴突内膜运输在NMJ释放细胞外囊泡。