Qiu Xiangcui, Dai Li, Li Haibo, Qu Konggang, Li Rui
Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
Langmuir. 2023 Oct 24;39(42):14912-14921. doi: 10.1021/acs.langmuir.3c01682. Epub 2023 Oct 9.
Pillaring MXene with organic molecules is an effective approach to expand the interlayer spacing and increase the accessible surface area for enhanced performance in energy storage applications. Herein, molecular dynamics simulations are employed to explore the pillaring effect of six organic molecules on TiCO. The interlayer spacing and structural characteristics of MXene after the insertion of different organic molecules are examined, and the influence of the type and quantity of organic molecules on the pillared MXene structure is systematically investigated. The results demonstrate that the inserted molecules are influenced by interactions between MXene layers, resulting in a thinner morphology. Effective pillar support on MXene is achieved only when a specific quantity of organic molecules is inserted between the layers. Furthermore, different organic molecules occupy distinct surface areas on MXene when acting as pillars. Pillaring molecules with a Pi-conjugated ring structure require a larger surface area on MXene, whereas those with a branched structure occupy a smaller surface area. Additionally, organic molecules containing oxygen functional groups tend to aggregate due to hydrogen bonding, impeding their diffusion within MXene sheets. Considering the interlayer expansion of MXene, surface area occupation, and diffusion characteristics, the isopropylamine demonstrates the most favorable pillaring effect on MXene. These findings provide valuable insights into the design and application of pillared MXenes in energy storage and other applications. Further studies on the properties and applications of the optimized pillared MXene structures will be conducted in the future.
用有机分子支撑MXene是扩大层间距和增加可及表面积以提高储能应用性能的有效方法。在此,采用分子动力学模拟来探究六种有机分子对TiCO的支撑效应。研究了插入不同有机分子后MXene的层间距和结构特征,并系统研究了有机分子的类型和数量对支撑型MXene结构的影响。结果表明,插入的分子受到MXene层间相互作用的影响,导致形态更薄。只有当特定数量的有机分子插入层间时,才能在MXene上实现有效的支撑。此外,不同的有机分子在作为支撑物时在MXene上占据不同的表面积。具有π共轭环结构的支撑分子在MXene上需要更大的表面积,而具有支链结构的分子占据较小的表面积。此外,含有氧官能团的有机分子由于氢键作用往往会聚集,阻碍它们在MXene片层内的扩散。考虑到MXene的层间扩展、表面积占据和扩散特性,异丙胺对MXene表现出最有利的支撑效应。这些发现为支撑型MXene在储能和其他应用中的设计和应用提供了有价值的见解。未来将对优化后的支撑型MXene结构的性能和应用进行进一步研究。