Suppr超能文献

基于磁共振成像构建临床-放射组学模型列线图对脑膜瘤亚型的术前预测

Preoperative Prediction of Meningioma Subtype by Constructing a Clinical-Radiomics Model Nomogram Based on Magnetic Resonance Imaging.

机构信息

Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Gansu International Scientific and Technological Cooperation Base of Medical, Lanzhou, China.

Shukun (Beijing) Technology Co., Ltd., Beijing, China.

出版信息

World Neurosurg. 2024 Jan;181:e203-e213. doi: 10.1016/j.wneu.2023.09.119. Epub 2023 Oct 7.

Abstract

OBJECTIVE

We sought to investigate the value of a clinical-radiomics model based on magnetic resonance imaging in differentiating fibroblastic meningiomas from non-fibroblastic meningiomas.

METHODS

Clinical, imaging, and postoperative pathologic data of 423 patients (128 fibroblastic meningiomas and 295 non-fibroblastic meningiomas) were randomly categorized into training (n = 296) and validation (n = 127) groups at a 7:3 ratio. The Selectpercentile and LASSO were used to selected the highly correlated features from 3376 radiomics features. Different classifiers were used to train and verify the model. The receiver operating characteristic curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE) were drawn to evaluate the performance. The optimal radiomics model was selected. Calibration curves and decision curve analysis were used to verify the clinical utility and consistency of the nomogram constructed from the radiomics features and clinical factors.

RESULTS

Thirteen radiomics features were selected from contrast-enhanced T1-weighted imaging and T2-weighted imaging after dimensionality reduction. The prediction performance of random forest radiomics model is slightly lower than that of the clinical-radiomics model. The area under the curve, SEN, SPE, and ACC of the clinical-radiomics model training set were 0.836 (95% confidence interval, 0.795-0.878), 0.922, 0.583, and 0.686, respectively. The area under the curve, SEN, SPE, and ACC of the validation set were 0.756 (95% confidence interval, 0.660-0.846), 0.816, 0.596, and 0.661, respectively.

CONCLUSIONS

The diagnostic efficacy of the clinical-radiomics model of fibroblastic meningioma and non-fibroblastic meningioma was better than that of the radiomics prediction model alone and can be used as a potential tool for clinical surgical planning and evaluation of patient prognosis.

摘要

目的

我们旨在探究基于磁共振成像的临床放射组学模型在区分纤维型脑膜瘤和非纤维型脑膜瘤中的价值。

方法

423 名患者(128 例纤维型脑膜瘤和 295 例非纤维型脑膜瘤)的临床、影像学和术后病理资料以 7:3 的比例随机分为训练组(n=296)和验证组(n=127)。通过 Selectpercentile 和 LASSO 从 3376 个放射组学特征中选择高度相关的特征。使用不同的分类器对模型进行训练和验证。绘制受试者工作特征曲线、准确率(ACC)、敏感度(SEN)和特异度(SPE)以评估模型的性能。选择最优的放射组学模型。绘制校准曲线和决策曲线分析,以验证从放射组学特征和临床因素构建的列线图的临床实用性和一致性。

结果

降维后从增强 T1 加权成像和 T2 加权成像中提取了 13 个放射组学特征。随机森林放射组学模型的预测性能略低于临床放射组学模型。临床放射组学模型训练集的曲线下面积、SEN、SPE 和 ACC 分别为 0.836(95%置信区间,0.795-0.878)、0.922、0.583 和 0.686。验证集的曲线下面积、SEN、SPE 和 ACC 分别为 0.756(95%置信区间,0.660-0.846)、0.816、0.596 和 0.661。

结论

纤维型脑膜瘤和非纤维型脑膜瘤的临床放射组学模型的诊断效能优于单独的放射组学预测模型,可作为临床手术规划和评估患者预后的潜在工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验