Suppr超能文献

基于金属有机框架的氢气分离膜的最新进展:综述

Recent Advancements in Metal-Organic Framework-Based Membranes for Hydrogen Separation: A Review.

作者信息

Baig Umair, Waheed Abdul, Jillani Shehzada Muhammad Sajid

机构信息

Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

出版信息

Chem Asian J. 2024 Aug 19;19(16):e202300619. doi: 10.1002/asia.202300619. Epub 2023 Nov 2.

Abstract

Metal-organic frameworks (MOFs) are promising porous materials that have huge potential for gas separation when put in the membrane configuration. MOFs have huge potential due to certain salient features of the MOFs such as excellent pore size, ease of tuning the pore chemistry, higher surface area, and chemical and thermal stabilities. MOFs have been explored for various gas separation and storage applications. This review discusses various approaches for fabricating MOFs-based membranes for the separation of H gas from a variety of feeds having various gases CO, CO, N, and CH as impurities. The emphasis has been put on three types of membranes for H separation which include MOFs-based hollow fibrous/tubular/disk membranes, MOFs-based mixed matrix membranes (MMMs), and MOFs-based stand-alone membranes. In addition, various challenges such as reducing inhomogeneity between MOFs and polymeric matrices have also been discussed. Similarly, the approaches to successfully decorating MOFs on different supports in different configurations have been explained. The possible ways of improving the MOFs-based membranes for H have also been discussed.

摘要

金属有机框架材料(MOFs)是很有前景的多孔材料,当制成膜结构时,在气体分离方面具有巨大潜力。由于MOFs具有某些显著特性,如孔径优异、易于调节孔化学性质、比表面积高以及化学和热稳定性,所以MOFs具有巨大潜力。MOFs已被用于各种气体分离和存储应用。本综述讨论了制备基于MOFs的膜以从含有各种气体如CO、CO、N和CH作为杂质的多种进料中分离氢气的各种方法。重点放在了用于氢气分离的三种类型的膜上,包括基于MOFs的中空纤维/管状/盘状膜、基于MOFs的混合基质膜(MMMs)和基于MOFs的独立膜。此外,还讨论了各种挑战,如减少MOFs与聚合物基质之间的不均匀性。同样,也解释了在不同构型下成功地将MOFs修饰在不同载体上的方法。还讨论了改进基于MOFs的氢气膜的可能方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验