Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, PR China.
Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, PR China.
Environ Res. 2023 Dec 15;239(Pt 1):117358. doi: 10.1016/j.envres.2023.117358. Epub 2023 Oct 10.
Here, we have demonstrated an innovative decontamination strategy using molten salts as a solvent to clean stubborn uranium contaminants on stainless steel surfaces. The aim of this work was to investigate the evolutionary path of contaminants in molten salts to reveal the decontamination mechanism, thus providing a basis for the practical application of the method. Thermodynamic analysis revealed that alkali metal hydroxides, carbonates, chlorides and nitrates can react with uranium oxides (UO and UO) to form various uranates. Notably, the decontamination mechanism was elucidated by analyzing the chemical composition of the contaminants in the molten salts and the surface morphology of the specimens considering NaOH-NaCO-NaCl melt as the decontaminant. The decontamination process involved two stages: a rapid decontamination stage dominated by the thermal effect of molten salt, and a stable decontamination stage governed by the chemical reactions and diffusion of molten salt. Subsequently, a multiple decontamination strategy was implemented to achieve high decontamination rates and low residual radioactivity. Within the actual cleaning time of 30 min, the decontamination efficiency (DE) of UO-contaminated specimens reached 97.8% and 93.0% for UO-contaminated specimens. Simultaneously, the radioactivity levels of all specimens were reduced to below the control level for reuse in the nuclear domain. Particularly, the actual radioactive waste from the nuclear industry reached a reusable level of radioactivity after decontamination. The NaOH-NaCO-NaCl melt outperforms conventional chemical solvents and may be one of the most rapid and efficient decontaminants for stubborn uranium contamination of metal surfaces, which provides insights in regard to handling nuclear waste.
在这里,我们展示了一种使用熔融盐作为溶剂来清洁不锈钢表面顽固铀污染物的创新去污策略。这项工作的目的是研究污染物在熔融盐中的演变路径,以揭示去污机制,从而为该方法的实际应用提供依据。热力学分析表明,碱金属氢氧化物、碳酸盐、氯化物和硝酸盐可以与铀氧化物(UO 和 UO)反应生成各种铀酸盐。值得注意的是,通过分析熔融盐中污染物的化学成分和考虑 NaOH-NaCO-NaCl 熔盐作为去污剂的样品表面形貌,阐明了去污机制。去污过程涉及两个阶段:一个是熔融盐热效应主导的快速去污阶段,另一个是熔融盐化学反应和扩散控制的稳定去污阶段。随后,采用多次去污策略实现了高去污率和低放射性残留。在实际清洗时间 30 分钟内,UO 污染样品的去污效率(DE)达到 97.8%,UO 污染样品的去污效率达到 93.0%。同时,所有样品的放射性水平均降低至核领域可重复使用的水平以下。特别是,经过去污处理后,核工业的实际放射性废物达到了可重复使用的放射性水平。NaOH-NaCO-NaCl 熔盐优于传统的化学溶剂,可能是金属表面顽固铀污染最快速、最有效的去污剂之一,为处理核废料提供了思路。