Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA.
BMC Mol Cell Biol. 2023 Oct 11;24(1):32. doi: 10.1186/s12860-023-00492-3.
The morphogenetic process of apical constriction, which relies on non-muscle myosin II (NMII) generated constriction of apical domains of epithelial cells, is key to the development of complex cellular patterns. Apical constriction occurs in almost all multicellular organisms, but one of the most well-characterized systems is the Folded-gastrulation (Fog)-induced apical constriction that occurs in Drosophila. The binding of Fog to its cognizant receptors Mist/Smog results in a signaling cascade that leads to the activation of NMII-generated contractility. Despite our knowledge of key molecular players involved in Fog signaling, we sought to explore whether other proteins have an undiscovered role in its regulation. We developed a computational method to predict unidentified candidate NMII regulators using a network of pairwise protein-protein interactions called an interactome. We first constructed a Drosophila interactome of over 500,000 protein-protein interactions from several databases that curate high-throughput experiments. Next, we implemented several graph-based algorithms that predicted 14 proteins potentially involved in Fog signaling. To test these candidates, we used RNAi depletion in combination with a cellular contractility assay in Drosophila S2R + cells, which respond to Fog by contracting in a stereotypical manner. Of the candidates we screened using this assay, two proteins, the serine/threonine phosphatase Flapwing and the putative guanylate kinase CG11811 were demonstrated to inhibit cellular contractility when depleted, suggestive of their roles as novel regulators of the Fog pathway.
顶端缢缩的形态发生过程依赖于非肌肉肌球蛋白 II(NMII)在细胞的顶端区域产生的收缩,这是形成复杂细胞模式的关键。顶端缢缩发生在几乎所有多细胞生物中,但其中最具特征的系统是在果蝇中发生的折叠原肠胚形成(Fog)诱导的顶端缢缩。Fog 与其认知受体 Mist/Smog 的结合导致信号级联反应,导致 NMII 产生的收缩性激活。尽管我们了解参与 Fog 信号转导的关键分子,但我们仍试图探索其他蛋白质是否在其调节中具有未被发现的作用。我们开发了一种计算方法,使用称为相互作用组的成对蛋白质 - 蛋白质相互作用网络来预测未识别的候选 NMII 调节剂。我们首先从几个数据库构建了一个超过 500,000 个蛋白质 - 蛋白质相互作用的果蝇相互作用组,这些数据库可整理高通量实验。接下来,我们实施了几种基于图的算法,预测了 14 种可能参与 Fog 信号转导的蛋白质。为了测试这些候选物,我们在果蝇 S2R+细胞中使用 RNAi 耗竭结合细胞收缩性测定法进行了测试,该细胞以典型的方式收缩来响应 Fog。在我们使用该测定法筛选的候选物中,两种蛋白质,丝氨酸/苏氨酸磷酸酶 Flapwing 和假定的鸟苷酸激酶 CG11811,在耗尽时被证明抑制细胞收缩性,表明它们作为 Fog 途径的新调节剂的作用。