Suppr超能文献

视觉信息在整体处理中的非加性整合。

Nonadditive integration of visual information in ensemble processing.

作者信息

Wang Tongyu, Zhao Yuqing, Jia Jianrong

机构信息

Department of Psychology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.

Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.

出版信息

iScience. 2023 Sep 19;26(10):107988. doi: 10.1016/j.isci.2023.107988. eCollection 2023 Oct 20.

Abstract

Statistically summarizing information from a stimulus array into an ensemble representation (e.g., the mean) improves the efficiency of visual processing. However, little is known about how the brain computes the ensemble statistics. Here, we propose that ensemble processing is realized by nonadditive integration, rather than linear averaging, of individual items. We used a linear regression model approach to extract EEG responses to three levels of information: the individual items, their local interactions, and their global interaction. The local and global interactions, representing nonadditive integration of individual items, elicited rapid and independent neural responses. Critically, only the neural representation of the global interaction predicted the precision of the ensemble perception at the behavioral level. Furthermore, spreading attention over the global pattern to enhance ensemble processing directly promoted rapid neural representation of the global interaction. Taken together, these findings advocate a global, nonadditive mechanism of ensemble processing in the brain.

摘要

从刺激阵列中对信息进行统计汇总,形成一个整体表征(例如平均值),可以提高视觉处理的效率。然而,对于大脑如何计算整体统计信息,我们却知之甚少。在这里,我们提出整体处理是通过对单个项目进行非加法整合而非线性平均来实现的。我们使用线性回归模型方法来提取脑电图对三种信息水平的反应:单个项目、它们的局部相互作用以及它们的全局相互作用。局部和全局相互作用代表了单个项目的非加法整合,引发了快速且独立的神经反应。至关重要的是,只有全局相互作用的神经表征在行为水平上预测了整体感知的精度。此外,将注意力分散到全局模式以增强整体处理,直接促进了全局相互作用的快速神经表征。综上所述,这些发现支持了大脑中整体处理的全局、非加法机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验