Kiss Ádám, Huszár Olívia Mária, Bodosi Balázs, Eördegh Gabriella, Tót Kálmán, Nagy Attila, Kelemen András
Department of Physiology, Faculty of Medicine, University of Szeged, Dóm Tér 10, Szeged 6720, Hungary.
Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary.
MethodsX. 2023 Sep 30;11:102378. doi: 10.1016/j.mex.2023.102378. eCollection 2023 Dec.
Preprocessing is a mandatory step in electroencephalogram (EEG) signal analysis. Overcoming challenges posed by high noise levels and substantial amplitude artifacts, such as blink-induced electrooculogram (EOG) and muscle-related electromyogram (EMG) interference, is imperative. The signal-to-noise ratio significantly influences the reliability and statistical significance of subsequent analyses. Existing referencing approaches employed in multi-card systems, like using a single electrode or averaging across multiple electrodes, fall short in this respect. In this article, we introduce an innovative referencing method tailored to multi-card instruments, enhancing signal fidelity and analysis outcomes. Our proposed signal processing loop not only mitigates blink-related artifacts but also accurately identifies muscle activity. This work contributes to advancing EEG analysis by providing a robust solution for artifact removal and enhancing data integrity.•Removes blink•Marks muscle activity•-references with design specific enhancements.
预处理是脑电图(EEG)信号分析中的一个必要步骤。克服高噪声水平和大幅伪迹(如眨眼诱发的眼电图(EOG)和肌肉相关的肌电图(EMG)干扰)带来的挑战至关重要。信噪比显著影响后续分析的可靠性和统计显著性。多通道系统中现有的参考方法,如使用单个电极或对多个电极进行平均,在这方面存在不足。在本文中,我们介绍了一种专门为多通道仪器量身定制的创新参考方法,可提高信号保真度和分析结果。我们提出的信号处理循环不仅能减轻与眨眼相关的伪迹,还能准确识别肌肉活动。这项工作通过提供一种强大的伪迹去除解决方案和增强数据完整性,为推进脑电图分析做出了贡献。•去除眨眼•标记肌肉活动• - 具有特定设计增强功能的参考。