Suppr超能文献

对由Biosemi仪器记录的64通道脑电图进行自动预处理。

Automated preprocessing of 64 channel electroenchephalograms recorded by biosemi instruments.

作者信息

Kiss Ádám, Huszár Olívia Mária, Bodosi Balázs, Eördegh Gabriella, Tót Kálmán, Nagy Attila, Kelemen András

机构信息

Department of Physiology, Faculty of Medicine, University of Szeged, Dóm Tér 10, Szeged 6720, Hungary.

Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary.

出版信息

MethodsX. 2023 Sep 30;11:102378. doi: 10.1016/j.mex.2023.102378. eCollection 2023 Dec.

Abstract

Preprocessing is a mandatory step in electroencephalogram (EEG) signal analysis. Overcoming challenges posed by high noise levels and substantial amplitude artifacts, such as blink-induced electrooculogram (EOG) and muscle-related electromyogram (EMG) interference, is imperative. The signal-to-noise ratio significantly influences the reliability and statistical significance of subsequent analyses. Existing referencing approaches employed in multi-card systems, like using a single electrode or averaging across multiple electrodes, fall short in this respect. In this article, we introduce an innovative referencing method tailored to multi-card instruments, enhancing signal fidelity and analysis outcomes. Our proposed signal processing loop not only mitigates blink-related artifacts but also accurately identifies muscle activity. This work contributes to advancing EEG analysis by providing a robust solution for artifact removal and enhancing data integrity.•Removes blink•Marks muscle activity•-references with design specific enhancements.

摘要

预处理是脑电图(EEG)信号分析中的一个必要步骤。克服高噪声水平和大幅伪迹(如眨眼诱发的眼电图(EOG)和肌肉相关的肌电图(EMG)干扰)带来的挑战至关重要。信噪比显著影响后续分析的可靠性和统计显著性。多通道系统中现有的参考方法,如使用单个电极或对多个电极进行平均,在这方面存在不足。在本文中,我们介绍了一种专门为多通道仪器量身定制的创新参考方法,可提高信号保真度和分析结果。我们提出的信号处理循环不仅能减轻与眨眼相关的伪迹,还能准确识别肌肉活动。这项工作通过提供一种强大的伪迹去除解决方案和增强数据完整性,为推进脑电图分析做出了贡献。•去除眨眼•标记肌肉活动• - 具有特定设计增强功能的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b88f/10562838/5a3d71358b5a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验