Zhang Yanqiu, Wang Hao, Guo Jing, Cheng Xiquan, Han Gang, Lau Cher Hon, Lin Haiqing, Liu Shaomin, Ma Jun, Shao Lu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
School of Environment, Harbin Institute of Technology, Harbin 150009, China.
Science. 2023 Oct 13;382(6667):202-206. doi: 10.1126/science.adi9531. Epub 2023 Oct 12.
Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype () ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.
现有的聚酰胺(PA)膜合成方案是通过控制以扩散为主导的液相反应来实现的,这些反应会产生不理想的空间结构和离子化行为。我们报告了一种冰限制界面聚合策略,以实现对界面反应的有效动力学控制以及对含单体的六方多型()冰相的热力学调控,从而合理地合成用于纳滤的三维准层状PA膜。实验和分子模拟证实了潜在的膜形成机制。我们的冰限制PA纳滤膜具有高密度离子化结构和优异的传输通道,实现了卓越的水渗透性和出色的离子选择性。