Suppr超能文献

通过二元稀释策略实现理想的准平面异质结有机太阳能电池。

Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy.

作者信息

Wen Lin, Mao Houdong, Zhang Lifu, Zhang Jiayou, Qin Zhao, Tan Licheng, Chen Yiwang

机构信息

College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.

出版信息

Adv Mater. 2024 Jan;36(3):e2308159. doi: 10.1002/adma.202308159. Epub 2023 Dec 2.

Abstract

The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.

摘要

顺序沉积工艺已证明实现具有理想梯度相分离形态的光层结构具有很大可能性,这种形态对决定有机太阳能电池(OSC)性能的物理过程有至关重要的影响。然而,具有梯度分布的伪平面异质结(P-PHJ)的可控制备尚未得到有效阐释。在此,提出了一种二元稀释策略,分别用含微量受体BO-4Cl的PM6溶液和含微量给体PM6的L8-BO溶液来形成P-PHJ薄膜。这种结构具有良好的给体(D)和受体(A)垂直梯度分布以及更大的D/A互穿区域,这促进了激子的产生和离解,缩短了电荷传输距离并优化了载流子动力学。此外,BO-4Cl对PM6的稀释促进了活性层聚集尺寸和相纯度的调控,从而减轻了能量无序和电压损失。结果,P-PHJ器件表现出19.32%的出色功率转换效率,短路电流密度高达26.92 mA cm ,远高于平面二元异质结(17.67%)和三元本体异质结(18.49%)器件。本研究证明了一种简单而有效的方法,为构建理想的活性层形态和高性能OSC提供了一条途径。

相似文献

1
Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy.
Adv Mater. 2024 Jan;36(3):e2308159. doi: 10.1002/adma.202308159. Epub 2023 Dec 2.
2
Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells.
Adv Mater. 2023 Mar;35(12):e2208997. doi: 10.1002/adma.202208997. Epub 2023 Feb 17.
3
17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor.
Adv Mater. 2021 Sep;33(37):e2102778. doi: 10.1002/adma.202102778. Epub 2021 Jul 28.
4
Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells.
Nanomicro Lett. 2023 Apr 10;15(1):92. doi: 10.1007/s40820-023-01057-x.
5
Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells.
ACS Appl Mater Interfaces. 2019 Jul 24;11(29):26213-26221. doi: 10.1021/acsami.9b10689. Epub 2019 Jul 12.
7
Suppressing Exciton-Vibration Coupling to Prolong Exciton Lifetime of Nonfullerene Acceptors Enables High-Efficiency Organic Solar Cells.
Angew Chem Int Ed Engl. 2024 Feb 19;63(8):e202316227. doi: 10.1002/anie.202316227. Epub 2024 Jan 18.
8
Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics.
Adv Mater. 2022 Aug;34(33):e2203379. doi: 10.1002/adma.202203379. Epub 2022 Jul 17.
10
Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells.
Adv Mater. 2023 Feb;35(6):e2208211. doi: 10.1002/adma.202208211. Epub 2022 Dec 18.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验