Xu Mengwen, Xiao Qiangqiang, Zu Xudong, Tan Yaping, Huang Zhengxiang
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Information Technology, Jiangsu Open University, Nanjing 210094, China.
Materials (Basel). 2023 Sep 30;16(19):6517. doi: 10.3390/ma16196517.
The flow stress of face-centered cubic (FCC) metals exhibits a rapid increase near a strain rate of 10 s under fixed-strain conditions. However, many existing constitutive models either fail to capture the mechanical characteristics of this plastic deformation or use piecewise strain-rate hardening models to describe this phenomenon. Unfortunately, these piecewise models may suffer from issues such as discontinuity of physical quantities and difficulties in determining segment markers, and struggle to reflect the underlying physical mechanisms that give rise to this mutation phenomenon. In light of this, this paper proposes that the abrupt change in flow stress sensitivity to strain rate in FCC metals can be attributed to microstructural evolution characteristics. To address this, a continuous semiempirical physical constitutive model for FCC metals is established based on the microstructural size evolution proposed by Molinari and Ravichandran and the dislocation motion slip mechanism. This model effectively describes the mutation behavior of strain-rate sensitivity under fixed strain, particularly evident in an annealed OFHC. The predicted results of the model across a wide range of strain rates (10-10 s) and temperatures (77-1096 K) demonstrate relative errors generally within ±10% of the experimental values. Furthermore, the model is compared with five other models, including the mechanical threshold stress (MTS), Nemat-Nasser-Li (NNL), Preston-Tonks-Wallace (PTW), Johnson-Cook (JC), and Molinari-Ravichandran (MR) models. A comprehensive illustration of errors reveals that the proposed model outperforms the other five models in describing the plastic deformation behavior of OFHC. The error results offer valuable insights for selecting appropriate models for engineering applications and provide significant contributions to the field.
在固定应变条件下,面心立方(FCC)金属的流变应力在应变速率接近10 s时会迅速增加。然而,许多现有的本构模型要么无法捕捉这种塑性变形的力学特性,要么使用分段应变速率硬化模型来描述这一现象。不幸的是,这些分段模型可能存在诸如物理量不连续以及确定分段标记困难等问题,并且难以反映导致这种突变现象的潜在物理机制。鉴于此,本文提出FCC金属中流变应力对应变速率敏感性的突然变化可归因于微观结构演变特征。为解决这一问题,基于Molinari和Ravichandran提出的微观结构尺寸演变以及位错运动滑移机制,建立了一种FCC金属的连续半经验物理本构模型。该模型有效地描述了固定应变下应变速率敏感性的突变行为,在退火无氧高导电铜(OFHC)中尤为明显。该模型在广泛的应变速率范围(10 - 10 s)和温度范围(77 - 1096 K)内的预测结果表明,相对误差一般在实验值的±10%以内。此外,将该模型与其他五个模型进行了比较,包括机械阈值应力(MTS)模型、Nemat - Nasser - Li(NNL)模型、Preston - Tonks - Wallace(PTW)模型、Johnson - Cook(JC)模型和Molinari - Ravichandran(MR)模型。对误差的全面说明表明,所提出的模型在描述OFHC的塑性变形行为方面优于其他五个模型。误差结果为工程应用中选择合适的模型提供了有价值的见解,并为该领域做出了重要贡献。