预测灾后未满足的医疗需求:一种机器学习方法。

Predicting Unmet Healthcare Needs in Post-Disaster: A Machine Learning Approach.

机构信息

Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Republic of Korea.

出版信息

Int J Environ Res Public Health. 2023 Sep 24;20(19):6817. doi: 10.3390/ijerph20196817.

Abstract

Unmet healthcare needs in the aftermath of disasters can significantly impede recovery efforts and exacerbate health disparities among the affected communities. This study aims to assess and predict such needs, develop an accurate predictive model, and identify the key influencing factors. Data from the 2017 Long-term Survey on the Change of Life of Disaster Victims in South Korea were analyzed using machine learning techniques, including logistic regression, C5.0 tree-based model, and random forest. The features were selected based on Andersen's health behavior model and disaster-related factors. Among 1659 participants, 31.5% experienced unmet healthcare needs after a disaster. The random forest algorithm exhibited the best performance in terms of precision, accuracy, Under the Receiver Operating Characteristic (AUC-ROC), and F-1 scores. Subjective health status, disaster-related diseases or injuries, and residential area have emerged as crucial factors predicting unmet healthcare needs. These findings emphasize the vulnerability of disaster-affected populations and highlight the value of machine learning in post-disaster management policies for decision-making.

摘要

灾害后未满足的医疗保健需求可能会严重阻碍恢复工作,并加剧受灾社区之间的健康差距。本研究旨在评估和预测这些需求,开发准确的预测模型,并确定关键影响因素。使用机器学习技术,包括逻辑回归、C5.0 树基模型和随机森林,对来自韩国 2017 年灾害受害者生活变化长期调查的数据进行了分析。特征是基于安德森的健康行为模型和与灾害相关的因素选择的。在 1659 名参与者中,31.5%的人在灾害后经历了未满足的医疗保健需求。随机森林算法在精度、准确性、受试者工作特征曲线下面积(AUC-ROC)和 F1 分数方面表现出最好的性能。主观健康状况、与灾害相关的疾病或伤害以及居住区域已成为预测未满足医疗保健需求的关键因素。这些发现强调了受灾人群的脆弱性,并突出了机器学习在灾害后管理政策中的决策价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6661/10572666/042664389a9f/ijerph-20-06817-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索