Suppr超能文献

基于库的多输入混合残差神经网络拉曼光谱识别

Library-Based Raman Spectral Identification Using Multi-Input Hybrid ResNet.

作者信息

Chen Tiejun, Baek Sung-June

机构信息

Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61186, South Korea.

出版信息

ACS Omega. 2023 Sep 27;8(40):37482-37489. doi: 10.1021/acsomega.3c05780. eCollection 2023 Oct 10.

Abstract

Raman spectroscopy is widely used for its exceptional identification capabilities in various fields. Traditional methods for target identification using Raman spectroscopy rely on signal correlation with moving windows, requiring data preprocessing that can significantly impact identification performance. In recent years, deep-learning approaches have been proposed to leverage data augmentation techniques, such as baseline and additive noise addition, in order to overcome data scarcity. However, these deep-learning methods are limited to the spectra encountered during training and struggle to handle unseen spectra. To address these limitations, we propose a multi-input hybrid deep-learning model trained with simulated spectral data. By employing simulated spectra, our method tackles the challenges of data scarcity and the handling of unseen spectra encountered in traditional and deep-learning methods. Experimental results demonstrate that our proposed method achieves outstanding identification performance and effectively handles spectra obtained from different Raman spectroscopy systems.

摘要

拉曼光谱因其在各个领域出色的识别能力而被广泛应用。使用拉曼光谱进行目标识别的传统方法依赖于与移动窗口的信号相关性,需要进行数据预处理,这可能会显著影响识别性能。近年来,为了克服数据稀缺问题,人们提出了深度学习方法来利用数据增强技术,如添加基线和加性噪声。然而,这些深度学习方法仅限于处理训练期间遇到的光谱,难以处理未见过的光谱。为了解决这些局限性,我们提出了一种使用模拟光谱数据训练的多输入混合深度学习模型。通过使用模拟光谱,我们的方法解决了传统方法和深度学习方法中遇到的数据稀缺以及处理未见过的光谱的挑战。实验结果表明,我们提出的方法取得了出色的识别性能,并能有效处理从不同拉曼光谱系统获得的光谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc6/10568588/11c4a681d9f6/ao3c05780_0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验