Suppr超能文献

数学分析确定了表皮生长因子受体突变的非小细胞肺癌的最佳治疗策略。

Mathematical analysis identifies the optimal treatment strategy for epidermal growth factor receptor-mutated non-small cell lung cancer.

作者信息

Yu Qian, Kobayashi Susumu S, Haeno Hiroshi

机构信息

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan.

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

出版信息

Front Oncol. 2023 Sep 28;13:1137966. doi: 10.3389/fonc.2023.1137966. eCollection 2023.

Abstract

INTRODUCTION

In Asians, more than half of non-small cell lung cancers (NSCLC) are induced by epidermal growth factor receptor (EGFR) mutations. Although patients carrying EGFR driver mutations display a good initial response to EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs), additional mutations provoke drug resistance. Hence, predicting tumor dynamics before treatment initiation and formulating a reasonable treatment schedule is an urgent challenge.

METHODS

To overcome this problem, we constructed a mathematical model based on clinical observations and investigated the optimal schedules for EGFR-TKI therapy.

RESULTS

Based on published data on cell growth rates under different drugs, we found that using osimertinib that are efficient for secondary resistant cells as the first-line drug is beneficial in monotherapy, which is consistent with published clinical statistical data. Moreover, we identified the existence of a suitable drug-switching time; that is, changing drugs too early or too late was not helpful. Furthermore, we demonstrate that osimertinib combined with erlotinib or gefitinib as first-line treatment, has the potential for clinical application. Finally, we examined the relationship between the initial ratio of resistant cells and final cell number under different treatment conditions, and summarized it into a therapy suggestion map. By performing parameter sensitivity analysis, we identified the condition where osimertinib-first therapy was recommended as the optimal treatment option.

DISCUSSION

This study for the first time theoretically showed the optimal treatment strategies based on the known information in NSCLC. Our framework can be applied to other types of cancer in the future.

摘要

引言

在亚洲人中,超过一半的非小细胞肺癌(NSCLC)是由表皮生长因子受体(EGFR)突变引起的。尽管携带EGFR驱动突变的患者对EGFR酪氨酸激酶抑制剂(EGFR-TKIs)显示出良好的初始反应,但额外的突变会引发耐药性。因此,在开始治疗前预测肿瘤动态并制定合理的治疗方案是一项紧迫的挑战。

方法

为克服这一问题,我们基于临床观察构建了一个数学模型,并研究了EGFR-TKI治疗的最佳方案。

结果

根据已发表的不同药物作用下细胞生长速率的数据,我们发现将对继发性耐药细胞有效的奥希替尼作为一线药物进行单药治疗是有益的,这与已发表的临床统计数据一致。此外,我们确定了存在一个合适的换药时间;也就是说,过早或过晚换药都没有帮助。此外,我们证明奥希替尼联合厄洛替尼或吉非替尼作为一线治疗具有临床应用潜力。最后,我们研究了不同治疗条件下耐药细胞初始比例与最终细胞数量之间的关系,并将其总结成一张治疗建议图。通过进行参数敏感性分析,我们确定了推荐奥希替尼一线治疗作为最佳治疗方案的条件。

讨论

本研究首次从理论上展示了基于NSCLC已知信息的最佳治疗策略。我们的框架未来可应用于其他类型的癌症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a2/10568620/3ac09326eb4b/fonc-13-1137966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验