Biology, Texas A&M University, College Station, TX, 77843, USA.
Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
F1000Res. 2023 Aug 17;11:1556. doi: 10.12688/f1000research.125351.2. eCollection 2022.
In , the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock. The daily rhythm in uncharged tRNA levels could arise from rhythmic amino acid levels or aminoacyl-tRNA synthetase (aaRSs) levels. : To determine if and how the clock potentially controls rhythms in aspartyl-tRNA synthetase (AspRS) and glutaminyl-tRNA synthetase (GlnRS), both observed to be rhythmic in circadian genomic datasets, transcriptional and translational fusions to luciferase were generated. These luciferase reporter fusions were examined in wild type (WT), clock mutant Δ , and clock-controlled transcription factor deletion strains. Translational and transcriptional fusions of AspRS and GlnRS to luciferase confirmed that their protein levels are clock-controlled with peak levels at night. Moreover, clock-controlled transcription factors NCU00275 and ADV-1 drive robust rhythmic protein expression of AspRS and GlnRS, respectively. These data support a model whereby coordinate clock control of select aaRSs drives rhythms in uncharged tRNAs, leading to rhythmic CPC-3 activation, and rhythms in translation of specific mRNAs.
在 中,生物钟通过调节 eIF2α 激酶 CPC-3(酵母和哺乳动物 GCN2 的同源物)控制有节奏的 mRNA 翻译起始。活性 CPC-3 磷酸化并失活 eIF2α,导致主观白天 P-eIF2α 水平升高和翻译起始减少。这种 CPC-3 的日间激活是由其与未负载 tRNA 的结合驱动的,而未负载 tRNA 水平在生物钟的控制下在白天达到峰值。未负载 tRNA 水平的日节律可能来自于氨基酸水平或氨酰-tRNA 合成酶(aaRSs)水平的节律。为了确定生物钟是否以及如何控制天冬氨酰-tRNA 合成酶(AspRS)和谷氨酰-tRNA 合成酶(GlnRS)的节律,这两种酶在生物钟的基因组数据集中均被观察到是有节律的,生成了对荧光素酶的转录和翻译融合。这些荧光素酶报告基因融合在野生型(WT)、时钟突变体 Δ和时钟控制转录因子缺失菌株中进行了检测。AspRS 和 GlnRS 的转录和翻译融合证实它们的蛋白水平受到时钟的控制,峰值出现在夜间。此外,时钟控制转录因子 NCU00275 和 ADV-1 分别驱动 AspRS 和 GlnRS 的强大节律性蛋白表达。这些数据支持这样一种模型,即选择的 aaRSs 的协调时钟控制驱动未负载 tRNA 的节律,从而导致 CPC-3 的节律性激活,以及特定 mRNA 翻译的节律。