Wang Jian, Wu Zuoxu, Liu Yijie, Hou Shuaihang, Qiao Youwei, Tang Zunqian, Mao Jun, Zhang Qian, Cao Feng
School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China.
School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China.
ACS Appl Mater Interfaces. 2023 Oct 25;15(42):49123-49131. doi: 10.1021/acsami.3c10191. Epub 2023 Oct 16.
A selective thermal emitter with superior thermal stability and perfect selective thermal emission in specific bands can facilitate the lifting of the thermophotovoltaic (TPV) energy conversion efficiency in TPV systems. Scalable planar selective thermal emitters with superior spectral selectivity and robust high-temperature stability are desired to meet the requirements of large-scale deployments of TPV systems. However, stably reradiating the available thermal photons at above 1273 K remains a significant challenge for selective thermal emitters. In this work, we demonstrated a high-selectivity planar thermal emitter based on the composite ceramic of ZrC and AlO. The prepared selective thermal emitter provides an emissivity of around 90% above the photon energy (0.6 eV) at 1423 K, a strong emission suppression effect below 0.6 eV, and superior thermal stability up to at least 1423 K. Therefore, the overall spectral efficiency can reach around 53%. Coupled with an InGaAs PV cell, the TPV system based on the selective thermal emitter demonstrates a predicted heat-to-electricity power conversion efficiency of 29.78% at 1423 K due to the matched spectral response of the emitter with the PV cell. Our work opens a new way forward for TPV systems based on planar selective thermal emitters.
一种具有卓越热稳定性且在特定波段具备完美选择性热发射特性的选择性热发射器,能够推动热光伏(TPV)系统中热光伏能量转换效率的提升。为满足TPV系统大规模部署的需求,人们期望获得具有卓越光谱选择性和强大高温稳定性的可扩展平面选择性热发射器。然而,对于选择性热发射器而言,在1273 K以上稳定地再辐射可用热光子仍然是一项重大挑战。在这项工作中,我们展示了一种基于ZrC和AlO复合陶瓷的高选择性平面热发射器。所制备的选择性热发射器在1423 K时,光子能量(0.6 eV)以上的发射率约为90%,在0.6 eV以下具有强烈的发射抑制效应,并且在至少1423 K的温度下具有卓越的热稳定性。因此,整体光谱效率可达到约53%。与InGaAs光伏电池相结合,基于该选择性热发射器的TPV系统在1423 K时,由于发射器与光伏电池的光谱响应匹配,展现出预测的29.78%的热电功率转换效率。我们的工作为基于平面选择性热发射器的TPV系统开辟了一条新的道路。