Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
AdventHealth, Translational Research Institute, Orlando, Florida, USA.
Aging Cell. 2024 Jun;23(6):e14015. doi: 10.1111/acel.14015. Epub 2023 Oct 16.
Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular-level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual-paced 400-m walk wearing a wrist-worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence-versus-time trajectory from their maximal cadence. Complex I&II-supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II-supported electron transfer system (max ETS) were quantified ex vivo using high-resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATP) was assessed in vivo by P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATP with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7-day free-living among older adults (N = 795, 70-94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th-75th percentile: 0%-2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATP were associated with 0.55 (95% CI: 0.26-0.84), 0.39 (95% CI: 0.09-0.70), and 0.54 (95% CI: 0.27-0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
表现性疲劳通常表现为无法完成日常体力任务,特别是随着年龄的增长,往往会导致依赖。因此,了解表现性疲劳的病因,特别是细胞水平的生物学机制,可能有助于延缓运动障碍的发生。我们假设骨骼肌能量学可能是导致表现性疲劳的重要因素。参与肌肉、移动性和老龄化研究的参与者佩戴腕戴式 ActiGraph GT9X 完成常规步伐的 400 米步行,以得出匹兹堡表现疲劳指数(PPFI,得分越高表示疲劳越严重),该指数量化了个体步速与时间轨迹从最大步速下降的百分比。使用高分辨率呼吸测定法在取自股外侧肌活检的通透纤维束中体外量化了复合体 I&II 支持的最大氧化磷酸化(max OXPHOS)和复合体 I&II 支持的电子传递系统(max ETS)。通过 P 磁共振光谱法在体内评估最大三磷酸腺苷(ATP)的产生。我们进行了 Tobit 回归分析,以研究 max OXPHOS、max ETS 和 ATP 与 PPFI 的关联,调整了技术员/地点、人口统计学特征以及 7 天自由生活期间的总活动计数,这些因素在 70-94 岁的老年人(n=795,58%为女性)中具有完整的 PPFI 评分和≥1 项能量学测量。中位数 PPFI 评分为 1.4%(25%至 75%:0%至 2.9%)。在充分调整后,max OXPHOS、max ETS 和 ATP 每降低 1 个标准差,PPFI 评分分别增加 0.55(95%CI:0.26-0.84)、0.39(95%CI:0.09-0.70)和 0.54(95%CI:0.27-0.81)。我们的研究结果表明,针对肌肉能量学的治疗方法可能有潜力减轻老年人的疲劳感,并降低其对残疾的易感性。